3-4-dihydroxyphenyllactic-acid and Fibrosis

3-4-dihydroxyphenyllactic-acid has been researched along with Fibrosis* in 3 studies

Other Studies

3 other study(ies) available for 3-4-dihydroxyphenyllactic-acid and Fibrosis

ArticleYear
Guanxining injection alleviates fibrosis in heart failure mice and regulates SLC7A11/GPX4 axis.
    Journal of ethnopharmacology, 2023, Jun-28, Volume: 310

    Radix et Rhizoma Salviae Miltiorrhizae (Salvia miltiorrhiza Bge., Lamiaceae, Danshen in Chinese) and Chuanxiong Rhizoma (rhizomes of Ligusticum chuanxiong Hort., Apiaceae, Chuanxiong in Chinese) both are important traditional Chinese medicine (TCM) for activating blood and eliminating stasis. Danshen-chuanxiong herb pair has been used for more than 600 years in China. Guanxinning injection (GXN) is a Chinese clinical prescription refined from aqueous extract of Danshen and Chuanxiong at the ratio of 1:1 (w/w). GXN has been mainly used in the clinical therapy of angina, heart failure (HF) and chronic kidney disease in China for almost twenty years.. This study aimed to explore the role of GXN on renal fibrosis in heart failure mice and the regulation of GXN on SLC7A11/GPX4 axis.. The transverse aortic constriction model was used to mimic HF accompanied by kidney fibrosis model. GXN was administrated by tail vein injection in dose of 12.0, 6.0, 3.0 mL/kg, respectively. Telmisartan (6.1 mg/kg, gavage) was used as a positive control drug. Cardiac ultrasound indexes of ejection fraction (EF), cardiac output (CO), left ventricle volume (LV Vol), HF biomarker of pro-B type natriuretic peptide (Pro-BNP), kidney function index of serum creatinine (Scr), kidney fibrosis index of collagen volume fraction (CVF) and connective tissue growth factor (CTGF) were evaluated and contrasted. Metabolomic method was employed to analyze the endogenous metabolites changes in kidneys. Besides, contents of catalase (CAT), xanthine oxidase (XOD), nitricoxidesynthase (NOS), glutathione peroxidase 4 (GPX4), the x(c)(-) cysteine/glutamate antiporter (SLC7A11) and ferritin heavy chain (FTH1) in kidney were quantitatively analyzed. In addition, ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to analyze the chemical composition of GXN and network pharmacology was used to predict possible mechanisms and the active ingredients of GXN.. The cardiac function indexes of EF, CO and LV Vol, kidney functional indicators of Scr, the degree of kidney fibrosis indicators CVF and CTGF were all relieved to different extent for the model mice treated with GXN. 21 differential metabolites involved in redox regulation, energy metabolism, organic acid metabolism, nucleotide metabolism, etc were identified. Aspartic acid, homocysteine, glycine, and serine, methionine, purine, phenylalanine and tyrosine metabolism were found to be the core redox metabolic pathways regulated by GXN. Furthermore, GXN were found to increase CAT content, upregulate GPX4, SLC7A11 and FTH1 expression in kidney significantly. Not only that, GXN also showed good effect in down-regulating XOD and NOS contents in kidney. Besides, 35 chemical constituents were initially identified in GXN. Active ingredients of GXN-targets-related enzymes/transporters-metabolites network was established to find out that GPX4 was a core protein for GXN and the top 10 active ingredients with the most relevant to renal protective effects of GXN were rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A.. GXN could significantly maintain cardiac function and alleviate the progression of fibrosis in the kidney for HF mice, and the mechanisms of action were related to regulating redox metabolism of aspartate, glycine, serine, and cystine metabolism and SLC7A11/GPX4 axis in kidney. The cardio-renal protective effect of GXN may be attributed to multi-components like rosmarinic acid, caffeic acid, ferulic acid, senkyunolide E, protocatechualdehyde, protocatechuic acid, danshensu, L-Ile, vanillic acid, salvianolic acid A et al.

    Topics: Animals; Chromatography, Liquid; Drugs, Chinese Herbal; Fibrosis; Glycine; Heart Failure; Mice; Rosmarinic Acid; Salvia miltiorrhiza; Tandem Mass Spectrometry; Vanillic Acid

2023
Comparative pharmacokinetic and tissue distribution profiles of four major bioactive components in normal and hepatic fibrosis rats after oral administration of Fuzheng Huayu recipe.
    Journal of pharmaceutical and biomedical analysis, 2015, Oct-10, Volume: 114

    Fuzheng Huayu recipe (FZHY) is a herbal product for the treatment of liver fibrosis approved by the Chinese State Food and Drug Administration (SFDA), but its pharmacokinetics and tissue distribution had not been investigated. In this study, the liver fibrotic model was induced with intraperitoneal injection of dimethylnitrosamine (DMN), and FZHY was given orally to the model and normal rats. The plasma pharmacokinetics and tissue distribution profiles of four major bioactive components from FZHY were analyzed in the normal and fibrotic rat groups using an ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. Results revealed that the bioavailabilities of danshensu (DSS), salvianolic acid B (SAB) and rosmarinic acid (ROS) in liver fibrotic rats increased 1.49, 3.31 and 2.37-fold, respectively, compared to normal rats. There was no obvious difference in the pharmacokinetics of amygdalin (AMY) between the normal and fibrotic rats. The tissue distribution of DSS, SAB, and AMY trended to be mostly in the kidney and lung. The distribution of DSS, SAB, and AMY in liver tissue of the model rats was significantly decreased compared to the normal rats. Significant differences in the pharmacokinetics and tissue distribution profiles of DSS, ROS, SAB and AMY were observed in rats with hepatic fibrosis after oral administration of FZHY. These results provide a meaningful basis for developing a clinical dosage regimen in the treatment of hepatic fibrosis by FZHY.

    Topics: Administration, Oral; Amygdalin; Animals; Area Under Curve; Benzofurans; Chromatography, High Pressure Liquid; Cinnamates; Depsides; Drugs, Chinese Herbal; Fibrosis; Kidney; Lactates; Liver Cirrhosis; Lung; Male; Rats; Rats, Wistar; Rosmarinic Acid; Tandem Mass Spectrometry; Tissue Distribution

2015
Danshensu inhibits β-adrenergic receptors-mediated cardiac fibrosis by ROS/p38 MAPK axis.
    Biological & pharmaceutical bulletin, 2014, Volume: 37, Issue:6

    Danshensu, the effective ingredient of the plant Salvia miltiorrhiza (Danshen), has been widely used for treatment of cardiovascular diseases. Cardiac fibrosis is an important process in pathological cardiac remodeling and leads to heart failure. We investigated the effect of Danshensu on β-adrenergic receptor (β-AR)-mediated cardiac fibrosis and the involved signaling transduction. Danshensu inhibited cardiofibroblast proliferation and collagen I synthesis induced by isoproterenol (ISO), a selective β-AR agonist. Phosphorylation of p38 mitogen-activated protein kinase (MAPK), which mediates ISO-induced cardiac fibrosis, was negatively regulated in this process. The negative regulation depended on the ISO inhibition of reactive oxygen species (ROS) production. Taken together, Danshensu may inhibit β-AR-mediated cardiac fibrosis by negative regulation of ROS-p38 MAPK signaling.

    Topics: Adrenergic beta-Agonists; Animals; Cardiomyopathies; Cell Proliferation; Cells, Cultured; Collagen Type I; Fibroblasts; Fibrosis; Isoproterenol; Lactates; MAP Kinase Signaling System; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptors, Adrenergic, beta

2014