Page last updated: 2024-10-17

3,4-dihydroxyphenylacetic acid and Air Sickness

3,4-dihydroxyphenylacetic acid has been researched along with Air Sickness in 1 studies

3,4-Dihydroxyphenylacetic Acid: A deaminated metabolite of LEVODOPA.
(3,4-dihydroxyphenyl)acetic acid : A dihydroxyphenylacetic acid having the two hydroxy substituents located at the 3- and 4-positions. It is a metabolite of dopamine.
dihydroxyphenylacetic acid : A dihydroxy monocarboxylic acid consisting of phenylacetic acid having two phenolic hydroxy substituents.

Research Excerpts

ExcerptRelevanceReference
"The fact that amphetamine, a noradrenaline releaser, prevents motion sickness leads the hypothesis of Wood and Graybiel that the noradrenergic neuron system in the brain stem acts against the development of motion sickness."7.68Catecholaminergic responses to rotational stress in rat brain stem: implications for amphetamine therapy of motion sickness. ( Matsunaga, T; Morita, M; Takeda, N; Wada, H; Yamatodani, A, 1990)
"The fact that amphetamine, a noradrenaline releaser, prevents motion sickness leads the hypothesis of Wood and Graybiel that the noradrenergic neuron system in the brain stem acts against the development of motion sickness."3.68Catecholaminergic responses to rotational stress in rat brain stem: implications for amphetamine therapy of motion sickness. ( Matsunaga, T; Morita, M; Takeda, N; Wada, H; Yamatodani, A, 1990)

Research

Studies (1)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (100.00)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Takeda, N1
Morita, M1
Yamatodani, A1
Wada, H1
Matsunaga, T1

Other Studies

1 other study available for 3,4-dihydroxyphenylacetic acid and Air Sickness

ArticleYear
Catecholaminergic responses to rotational stress in rat brain stem: implications for amphetamine therapy of motion sickness.
    Aviation, space, and environmental medicine, 1990, Volume: 61, Issue:11

    Topics: 3,4-Dihydroxyphenylacetic Acid; Amphetamine; Animals; Brain Stem; Disease Models, Animal; Homovanill

1990