3-4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2h)-isoquinolinone has been researched along with Ischemic-Attack--Transient* in 2 studies
2 other study(ies) available for 3-4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2h)-isoquinolinone and Ischemic-Attack--Transient
Article | Year |
---|---|
Post-treatment with an inhibitor of poly(ADP-ribose) polymerase attenuates cerebral damage in focal ischemia.
Poly(ADP-ribose) polymerase (PARP) is thought to play a physio-logical role in maintaining genomic integrity and in the repair of DNA strand breaks. However, the activation of PARP by free radical-damaged DNA plays a pivotal role in mediating ischemia-reperfusion injury. The excessive activation of PARP causes a rapid depletion of intracellular energy leading to cell death. The present study examined the effect of post-ischemic pharmacological inhibition of PARP in a rat focal cerebral ischemia model. In Long-Evans rats, focal cerebral ischemia was produced by cauterization of the right distal middle cerebral artery (MCA) with bilateral temporary common carotid artery (CCA) occlusion for 90 min. A PARP inhibitor, 3, 4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone (DPQ; IC50=1 microM/l) was injected i.p. 30 min after the onset of MCA occlusion (control: 10, 20, 40 and 80 mg/kg; n=7 each). Twenty-four hours later, the total infarct volume was measured. Regional blood flow in the right parietal cortex decreased to approximately 20% of the baseline following MCA occlusion in all groups. PARP inhibition lead to a significant decrease in damaged volume in all treated groups with the largest reduction in the 40 mg/kg group (111.5+/-24. 8 mm3, mean+/-SD, p<0.01), compared to the control group (193.5+/-28. 6 mm3). We also found there was a significant increase of poly(ADP-ribose) immunoreactivity in the ischemic region, as compared to the contralateral side, with DPQ treatment diminishing poly(ADP-ribose) production. These findings indicate that DPQ exerts its neuroprotective effects in vivo by PARP inhibition and that PARP inhibitors may be effective for treating ischemic stroke, even when the treatment is initiated after the onset of ischemia. Topics: Animals; Arterial Occlusive Diseases; Cerebral Infarction; Cerebrovascular Circulation; Enzyme Inhibitors; Immunohistochemistry; Ischemic Attack, Transient; Isoquinolines; Male; Piperidines; Poly(ADP-ribose) Polymerase Inhibitors; Rats; Rats, Long-Evans | 1999 |
Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia.
Nitric oxide (NO) and peroxynitrite, formed from NO and superoxide anion, have been implicated as mediators of neuronal damage following focal ischemia, but their molecular targets have not been defined. One candidate pathway is DNA damage leading to activation of the nuclear enzyme, poly(ADP-ribose) polymerase (PARP), which catalyzes attachment of ADP ribose units from NAD to nuclear proteins following DNA damage. Excessive activation of PARP can deplete NAD and ATP, which is consumed in regeneration of NAD, leading to cell death by energy depletion. We show that genetic disruption of PARP provides profound protection against glutamate-NO-mediated ischemic insults in vitro and major decreases in infarct volume after reversible middle cerebral artery occlusion. These results provide compelling evidence for a primary involvement of PARP activation in neuronal damage following focal ischemia and suggest that therapies designed towards inhibiting PARP may provide benefit in the treatment of cerebrovascular disease. Topics: Adenosine Triphosphate; Animals; Benzamides; Brain; Cells, Cultured; Cerebral Cortex; Cerebrovascular Circulation; DNA Damage; Enzyme Activation; Enzyme Inhibitors; Hemodynamics; Immunity, Innate; Ischemic Attack, Transient; Isoquinolines; Mice; Mice, Knockout; N-Methylaspartate; NAD; Neurons; Neurotoxins; Nitrates; Nitric Oxide; Piperidines; Poly(ADP-ribose) Polymerases | 1997 |