3-4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2h)-isoquinolinone and Glioblastoma

3-4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2h)-isoquinolinone has been researched along with Glioblastoma* in 1 studies

Other Studies

1 other study(ies) available for 3-4-dihydro-5-(4-(1-piperidinyl)butoxy)-1(2h)-isoquinolinone and Glioblastoma

ArticleYear
PARP-1 inhibitors DPQ and PJ-34 negatively modulate proinflammatory commitment of human glioblastoma cells.
    Neurochemical research, 2013, Volume: 38, Issue:1

    Poly(ADP-ribose) polymerases (PARPs) are recognized as key regulators of cell survival or death. PARP-1 is essential to the repair of DNA single-strand breaks via the base excision repair pathway. The enzyme may be overactivated in response to inflammatory cues, thus depleting cellular energy pools and eventually causing cell death. Accordingly, PARP-1 inhibitors, acting by competing with its physiological substrate NAD(+), have been proposed to play a protective role in a wide range of inflammatory and ischemia/reperfusion-associated diseases. Recently, it has also been reported that PARP-1 regulates proinflammatory mediators, including cytokines, chemokines, adhesion molecules, and enzymes (e.g., iNOS). Furthermore, PARP-1 has been shown to act as a coactivator of NF-κB- and other transcription factors implicated in stress/inflammation, as AP-1, Oct-1, SP-1, HIF, and Stat-1. To further substantiate this hypothesis, we tested the biomolecular effects of PARP-1 inhibitors DPQ and PJ-34 on human glioblastoma cells, induced to a proinflammatory state with lipopolysaccharide and Interferon-γ. PARP-1 expression was evaluated by laser scanning confocal microscopy immunofluorescence (LSM); nitrite production, LDH release and cell viability were also determined. LSM of A-172, SNB-19 and CAS-1 cells demonstrated that DPQ and PJ-34 downregulate PARP-1 expression; they also cause a decrease of LDH release and nitrite production, while increasing cell viability. Similar effects were caused in all three cell lines by N-mono-methyl-arginine, a well known iNOS inhibitor, and by L-carnosine and trehalose, two antioxidant molecules. These results demonstrate that, similar to other well characterized drugs, DPQ and PJ-34 reduce cell inflammation and damage that follow PARP-1 overexpression, while they increase cell survival: this suggests their potential exploitation in clinical Medicine.

    Topics: Anti-Inflammatory Agents; Biomarkers; Brain Neoplasms; Carnosine; Cell Line, Tumor; Cell Survival; Coloring Agents; Down-Regulation; Fluorescent Antibody Technique; Glioblastoma; Humans; Isoquinolines; L-Lactate Dehydrogenase; Microscopy, Confocal; Nitrites; Phenanthrenes; Piperidines; Poly (ADP-Ribose) Polymerase-1; Poly(ADP-ribose) Polymerase Inhibitors; Tetrazolium Salts; Thiazoles; Trehalose

2013