3-4--5-trimethoxystilbene and Breast-Neoplasms

3-4--5-trimethoxystilbene has been researched along with Breast-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for 3-4--5-trimethoxystilbene and Breast-Neoplasms

ArticleYear
3,5,4'-Trimethoxystilbene, a natural methoxylated analog of resveratrol, inhibits breast cancer cell invasiveness by downregulation of PI3K/Akt and Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition.
    Toxicology and applied pharmacology, 2013, Nov-01, Volume: 272, Issue:3

    The molecular basis of epithelial-mesenchymal transition (EMT) functions as a potential therapeutic target for breast cancer because EMT may endow breast tumor-initiating cells with stem-like characteristics and enable the dissemination of breast cancer cells. We have recently verified the antitumor activity of 3,5,4'-trimethoxystilbene (MR-3), a naturally methoxylated derivative of resveratrol, in colorectal cancer xenografts via an induction of apoptosis. The effect of MR-3 on EMT and the invasiveness of human MCF-7 breast adenocarcinoma cell line were also explored. We found that MR-3 significantly increased epithelial marker E-cadherin expression and triggered a cobblestone-like morphology of MCF-7 cells, while reciprocally decreasing the expression of mesenchymal markers, such as snail, slug, and vimentin. In parallel with EMT reversal, MR-3 downregulated the invasion and migration of MCF-7 cells. Exploring the action mechanism of MR-3 on the suppression of EMT and invasion indicates that MR-3 markedly reduced the expression and nuclear translocation of β-catenin, accompanied with the downregulation of β-catenin target genes and the increment of membrane-bound β-catenin. These results suggest the involvement of Wnt/β-catenin signaling in the MR-3-induced EMT reversion of MCF-7 cells. Notably, MR-3 restored glycogen synthase kinase-3β activity by inhibiting the phosphorylation of Akt, the event required for β-catenin destruction via a proteasome-mediated system. Overall, these findings indicate that the anti-invasive activity of MR-3 on MCF-7 cells may result from the suppression of EMT via down-regulating phosphatidylinositol 3-kinase (PI3K)/AKT signaling, and consequently, β-catenin nuclear translocation. These occurrences ultimately lead to the blockage of EMT and the invasion of breast cancer cells.

    Topics: Anticarcinogenic Agents; beta Catenin; Breast Neoplasms; Cell Line, Tumor; Down-Regulation; Epithelial-Mesenchymal Transition; Female; Humans; MCF-7 Cells; Neoplasm Invasiveness; Oncogene Protein v-akt; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Resveratrol; Stilbenes; Wnt Signaling Pathway

2013
Stilbene analogues affect cell cycle progression and apoptosis independently of each other in an MCF-7 array of clones with distinct genetic and chemoresistant backgrounds.
    Oncology reports, 2008, Volume: 19, Issue:3

    The development of chemoresistant breast cancer is poorly understood and second treatment options are barely investigated. The term 'chemoresistance' is ill-defined and thus, our experimental analyses aimed to disentangle the resistance to cell cycle arrest from the resistance to trigger apoptosis, both of which are important mechanisms to be targeted by anticancer therapy. Therefore, an MCF-7 array, which encompassed clones harboring distinct genetically- and pharmacologically-induced stages of resistance, was established. For this, MCF-7 cells were stably transfected with erbB2 cDNA and a dominant negative p53 mutation and the two clones were subjected to long-term treatment with the clinical agents 2'-deoxy-5-fluorouridine (5-FdUrd) or arabinosylcytosine (AraC) to develop specific chemoresistance. This array was tested with 3,4',5-trihydroxy-trans-stilbene (resveratrol) and the methoxylated paired stilbene analogue 3,4',5-trimethoxy-trans-stilbene (M5) to investigate whether these agents can overcome genetically- and pharmacologically-induced chemoresistance and to correlate the structure-activity relationship of resveratrol and M5. In all conditions tested, M5 exhibited stronger anticancer activity than resveratrol, but the cell cycle inhibitory properties of the tested drugs were dependent on the genetic background and the chemoresistant phenotype. In contrast, the proapoptotic properties were rather similar in the distinct genetic backgrounds of the clone array and therefore, apoptotic triggers and cell cycle checkpoints were distinctly affected and are thus independent of each other. The study demonstrates the merits or virtues of the genotypically- and phenotypically-defined clones of the MCF-7 array as a testing tool for novel drugs, which discriminates the two types of chemoresistance mechanisms.

    Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Breast Neoplasms; Cell Cycle; Cell Proliferation; Clone Cells; Drug Resistance, Neoplasm; Female; Genes, erbB-2; Genes, p53; Humans; Resveratrol; Stilbenes

2008
Synthesis of a resveratrol analogue with high ceramide-mediated proapoptotic activity on human breast cancer cells.
    Journal of medicinal chemistry, 2005, Nov-03, Volume: 48, Issue:22

    Resveratrol, a natural product with a stilbene structure, exerts profound proapoptotic activity in human cancer cells, by triggering the accumulation of ceramide, a bioactive sphingolipid. We studied the biological effects of seven methoxylated and/or naphthalene-based resveratrol analogues and compared these compounds with resveratrol with the objective to identify an analogue with higher ceramide-mediated proapoptotic activity relative to resveratrol. Here we show that the compound with three hydroxyls and a naphthalene ring is the most effective in triggering apoptosis coupled to the induction of endogenous ceramide in human cancer cells.

    Topics: Antineoplastic Agents; Apoptosis; Breast Neoplasms; Cell Line, Tumor; Ceramides; Drug Screening Assays, Antitumor; Female; Humans; Resveratrol; Stilbenes; Structure-Activity Relationship

2005
Synthesis and evaluation of analogues of (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene as potential cytotoxic and antimitotic agents.
    Journal of medicinal chemistry, 1992, Jun-12, Volume: 35, Issue:12

    A series of stilbenes has been prepared and tested for cytotoxicity in the five human cancer cell lines A-549 non-small cell lung, MCF-7 breast, HT-29 colon, SKMEL-5 melanoma, and MLM melanoma. The cis stilbenes 6a-f proved to be cytotoxic in all five cell lines, with potencies comparable to that of combretastatin A-4. These cytotoxic compounds were all potent inhibitors of tubulin polymerization. The corresponding trans stilbenes 7b-f were inactive as tubulin polymerization inhibitors and were significantly less cytotoxic in the five cancer cell lines. In the dihydro series, 8b, 8c, and 8f were inactive as tubulin polymerization inhibitors, while 8a, 8d, and 8e were less active than the corresponding cis compounds 6a, 6d, and 6e. The lack of tubulin polymerization inhibitory activity and cytotoxicity displayed by the phenanthrene 23b, which was synthesized as a conformationally rigid analogue of the lead compound 1, indicates that the activity of the stilbenes is not due to a totally planar conformation. Similarly, inactivity of the conformationally restricted analogue 26 suggests that the biologically active conformation of 1a resembles that of the cis alkene 1. Additional inactive compounds prepared include the benzylisoquinoline series 28-32 as well as the protoberberines 38 and 39. Shortening the two-carbon bridge of 1a to a one-carbon bridge in the diphenylmethane 20 resulted in a decrease in cytotoxicity and tubulin polymerization inhibitory activity. Although the corresponding benzophenone 18 was as active as 1a as a tubulin polymerization inhibitor, it was less cytotoxic than 1a, and the benzhydrol 19 was essentially inactive. With the exception of the amide 15c, which displayed low antitubulin activity, all of the phenylcinnamic acid derivatives 14a-c and 15a-f were inactive in the tubulin polymerization inhibition assay. The acid 14b and the ester 15a were cytotoxic in several of the cancer cell cultures in spite of their inactivity as tubulin polymerization inhibitors.

    Topics: Antineoplastic Agents; Breast Neoplasms; Cell Division; Colonic Neoplasms; Humans; Lung Neoplasms; Melanoma; Stilbenes; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured

1992