3-3--dihexyl-2-2--oxacarbocyanine and Leukemia--Myeloid--Acute

3-3--dihexyl-2-2--oxacarbocyanine has been researched along with Leukemia--Myeloid--Acute* in 2 studies

Other Studies

2 other study(ies) available for 3-3--dihexyl-2-2--oxacarbocyanine and Leukemia--Myeloid--Acute

ArticleYear
Contrasting features of MDR phenotype in leukemias by using two fluorochromes: implications for clinical practice.
    Leukemia research, 2007, Volume: 31, Issue:4

    The expression and activity of P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP1) were analyzed in 178 leukemia samples. Rhodamine-123 (Rho-123) and DiOC(2) were used as substrate to evaluate efflux pump activity. Chronic myeloid leukemia (CML) exhibited a higher percentage of positivity using Rho-123 than DiOC(2) (p=0.000) as compared to other types of leukemia. Moreover, Rho-123 was able to detected Pgp positive cells in a higher proportion of samples than DiOC(2) samples (p=0.004). Similarly, MRP1 positive cells were best detected by Rho-123 as opposed to DiOC(2) (p=0.003). The co-functionality of Rho-123 and DiOC(2) was observed in 26 out of 105 (24.8%) leukemic samples. Co-expression between Pgp and MRP1 was detected in 30 out of 56 (53.6%) samples. As a whole, when the same samples were analyzed, Rho-123 was able to detect Pgp positive cells in a higher proportion of samples than DiOC(2) (p=0.000). Similarly, MRP1 positive cells were best detected by Rho-123 as opposed to DiOC(2) (p=0.007). Our results support the idea that Rho-123 is the substrate of choice for leukemic cells.

    Topics: ATP Binding Cassette Transporter, Subfamily B, Member 1; Carbocyanines; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Flow Cytometry; Fluorescent Dyes; Humans; Leukemia; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid, Acute; Leukemia, Promyelocytic, Acute; Multidrug Resistance-Associated Proteins; Phenotype; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Rhodamine 123; Tumor Cells, Cultured

2007
Mitochondrial membrane sensitivity to depolarization in acute myeloblastic leukemia is associated with spontaneous in vitro apoptosis, wild-type TP53, and vicinal thiol/disulfide status.
    Blood, 2001, Jul-15, Volume: 98, Issue:2

    Nonresponse to remission-induction chemotherapy, which remains a major problem in acute myeloblastic leukemia (AML), has been linked to cellular resistance to apoptosis. Because the apoptosis induced by chemotherapeutic drugs is mediated by loss of mitochondrial transmembrane potential (MTP), it was postulated that sensitivity to mitochondrial membrane depolarization might be heterogeneous in AML. Using the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone (mClCCP), the mitochondrial membrane sensitivity to depolarization (mClCCP concentrations that inhibit 50% of the transmembrane potential [IC(50)]) in AML blasts was measured and demonstrated marked interclonal heterogeneity, with the existence of comparatively sensitive (median mClCCP IC(50), 4 microM) and resistant (median mClCCP IC(50), 10 microM) clones. Furthermore, the mClCCP IC(50) was inversely associated with spontaneous in vitro apoptosis (P =.001). It was high in cases with mutant TP53 and correlated with the total cellular level of the multidrug resistance-associated protein (P =.019) but not of bcl-2, bax, or bcl-x. It was also found that the dithiol oxidant diamide, in contrast to the monovalent thiol oxidant diethyl maleate, increased the sensitivity of mitochondrial membranes to mClCCP. To confirm that TP53 directly affects MTP in leukemic cells and to establish the role of vicinal thiol oxidation in the TP53-dependent pathway, CEM 4G5 leukemia cells with forced, temperature-dependent expression of TP53 were studied. Monobromobimane, which inhibits mitochondrial membrane depolarization by preventing dithiol cross-linking, inhibited depolarization and apoptosis in 4G5 cells. It was concluded that in leukemia, TP53 and vicinal thiol/disulfide status are determinants of mitochondrial membrane sensitivity to depolarization, which is in turn associated with spontaneous apoptosis.

    Topics: Apoptosis; bcl-2-Associated X Protein; bcl-X Protein; Carbocyanines; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Disulfides; Fluorescent Dyes; Humans; Intracellular Membranes; Leukemia, Myeloid, Acute; Maleates; Membrane Potentials; Mitochondria; Mutation; Oxidation-Reduction; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Sulfhydryl Compounds; Tumor Cells, Cultured; Tumor Suppressor Protein p53; Uncoupling Agents

2001