3-3--4-5--tetramethoxy-trans-stilbene has been researched along with Lung-Neoplasms* in 2 studies
2 other study(ies) available for 3-3--4-5--tetramethoxy-trans-stilbene and Lung-Neoplasms
Article | Year |
---|---|
Piceatannol, a natural trans-stilbene compound, inhibits human glyoxalase I.
Human glyoxalase I (GLO I), a rate-limiting enzyme for detoxification of methylglyoxal (MG), a by-product of glycolysis, is known to be a potential therapeutic target for cancer. Here, we searched new scaffolds from natural compounds for designing novel GLO I inhibitors and found trans-stilbene scaffold. We examined the inhibitory abilities to human GLO I of commercially available trans-stilbene compounds. Among them, piceatannol was found to have the most potent inhibitory activity against human GLO I. Piceatannol could inhibit the proliferation of human lung cancer NCI-H522 cells, which are dependent on GLO I for survival, in a dose- and time-dependent manner. In addition, piceatannol more significantly inhibited the proliferation of NCI-H522 cells than that of NCI-H460 cells, which are less dependent on GLO I. Importantly, overexpression of GLO I in NCI-H522 cells resulted in less sensitive to the antiproliferative activity of piceatannol. Taken together, this is the first report demonstrating that piceatannol inhibits GLO I activity and the GLO I-dependent proliferation of cancer cells. Furthermore, we determined a pharmacophore for novel inhibitors of human GLO I by computational simulation analyses of the binding mode of piceatannol to the enzyme hot spot in the active site. We suggest that piceatannol is a possible lead compound for the development of novel GLO I inhibitory anticancer drugs. Topics: Cell Line, Tumor; Cell Proliferation; Enzyme Inhibitors; Humans; Lactoylglutathione Lyase; Lung Neoplasms; Stilbenes | 2017 |
Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.
An array of cis-, trans-, and dihydrostilbenes and some N-arylbenzylamines were synthesized and evaluated for their cytotoxicity in the five cancer cell cultures A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon adenocarcinoma, SKMEL-5 melanoma, and MLM melanoma. Several cis-stilbenes, structurally similar to combretastatins, were highly cytotoxic in all five cell lines and these were also found to be active as inhibitors of tubulin polymerization. The most active compounds also inhibited the binding of colchicine to tubulin. The most potent of the new compounds, both as a tubulin polymerization inhibitor and as a cytotoxic agent, was (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene (5a). This substance was almost as potent as combretastatin A-4 (1a), the most active of the combretastatins, as a tubulin polymerization inhibitor. Compound 5a was found to be approximately 140 times more cytotoxic against HT-29 colon adenocarcinoma cells and about 10 times more cytotoxic against MCF-7 breast carcinoma cells than combretastatin A-4. However, 5a was found to be about 20 times less cytotoxic against A-549 lung carcinoma cells, 30 times less cytotoxic against SKMEL-5 melanoma cells, and 7 times less cytotoxic against MLM melanoma cells than combretastatin A-4. The relative potencies 5a greater than 8a greater than 6a for the cis, dihydro, and trans compounds, respectively, as inhibitors of tubulin polymerization are in agreement with the relative potencies previously observed for combretastatin A-4 (1a), dihydrocombretastatin A-4 (1c), and trans-combretastatin A-4 (1b). The relative potencies 5a greater than 8a greater than 6a were also reflected in the results of the cytotoxicity assays. Structure-activity relationships of this group of compounds are also discussed. Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Chemical Phenomena; Chemistry; Colchicine; Colonic Neoplasms; Humans; Lung Neoplasms; Melanoma; Molecular Structure; Polymers; Stilbenes; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured | 1991 |