3--methoxy-4--nitroflavone and Breast-Neoplasms

3--methoxy-4--nitroflavone has been researched along with Breast-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for 3--methoxy-4--nitroflavone and Breast-Neoplasms

ArticleYear
Substituted flavones as aryl hydrocarbon (Ah) receptor agonists and antagonists.
    Biochemical pharmacology, 1996, Apr-26, Volume: 51, Issue:8

    The structure-dependent aryl hydrocarbon (Ah) receptor agonist and antagonist activities of the following substituted flavones were investigated: flavone, 4'-methoxy-, 4'-amino-, 4'-chloro-, 4'-bromo-, 4'-nitro-, 4'-chloro-3'-nitro-, 3'-amino-4'-hydroxy-, 3',4'-dichloro-, and 4'-iodoflavone. The halogenated flavones exhibited competitive Ah receptor binding affinities (IC50 = 0.79 to 2.28 nM) that were comparable to that observed for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (1.78 nM). The compounds also induced transformation of the rat cytosolic Ah receptor and induced CYP1A1 gene expression in MCF-7 human breast cancer cells. However, despite the high Ah receptor binding affinities for these responses, the halogenated flavones were > 1000 times less active than TCDD for the other responses. Moreover, for other substituted flavones, there was no correlation between Ah receptor binding affinities and their activities as Ah receptor agonists. For example, 4'-aminoflavone induced CYP1A1 mRNA levels in MCF-7 cells but exhibited relatively low Ah receptor binding affinity (IC50 = 362 nM) and did not induce transformation of the rat cytosolic Ah receptor. All of the substituted flavones inhibited TCDD-induced transformation of the Ah receptor, and 4'-iodoflavone, an Ah receptor agonist at high concentrations (1-50 microM), inhibited the transformation at concentrations as low as 0.05 and 0.5 microM. Subsequent interaction studies with TCDD and 4'-iodoflavone confirmed that the latter compound inhibits induction of CYP1A1 gene expression by TCDD in MCF-7 cells. The results obtained for the substituted flavones suggest that within this structural class of compounds, various substituent groups can affect markedly the activity of each individual congener as an Ah receptor agonist or antagonist. These substituent-dependent differences in activity may be related to ligand-induced conformational changes in the Ah receptor complex and/or support the proposed existence of more than one form of the Ah receptor.

    Topics: Animals; Binding, Competitive; Breast Neoplasms; Cytochrome P-450 CYP1A1; Cytosol; Flavonoids; Humans; Microsomes, Liver; Polychlorinated Dibenzodioxins; Rats; Receptors, Aryl Hydrocarbon; RNA, Messenger; Tumor Cells, Cultured

1996
Identification of 3'-methoxy-4'-nitroflavone as a pure aryl hydrocarbon (Ah) receptor antagonist and evidence for more than one form of the nuclear Ah receptor in MCF-7 human breast cancer cells.
    Archives of biochemistry and biophysics, 1995, Jan-10, Volume: 316, Issue:1

    The competitive binding of 3'-methoxy-4'-nitro, 4'-amino-3'-methoxy, 4'-methoxy-3'-nitro, and 3'-amino-4'-methoxyflavone (compounds 1 to 4, respectively) to the rat cytosolic aryl hydrocarbon (Ah) receptor gave IC50 values of 2.27, 86.1, 872, and 19.4 nM. Flavones 3 and 4 were characterized as Ah receptor agonists in MCF-7 human breast cancer cells and induced CYP1A1 gene expression, whereas the 3-methoxy-substituted flavones (1 and 2) were inactive. All four compounds inhibited induction of ethoxyresorufin O-deethylase (EROD) activity by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells; moreover, in vitro studies with TCDD-induced rat liver microsomes showed that flavones 1 to 4 inhibited EROD activity in the presence or absence of NADPH. In MCF-7 cells cotreated with flavones 1 or 2 (0.01 to 10 microM) plus TCDD or [3H]TCDD, there was a concentration-dependent inhibition of TCDD-induced CYP1A1 mRNA levels and formation of radiolabeled nuclear Ah receptor complex. Velocity sedimentation analysis of nuclear extracts from MCF-7 cells treated with [3H]TCDD plus 1 or 10 microM concentrations of flavones 1 and 2 showed that an early eluting specifically bound nuclear Ah receptor complex was present. However, under these same conditions the flavones inhibited TCDD-induced CYP1A1 gene expression. The apparent molecular mass of this nuclear complex was 190 kDa as determined by cross-linking to a 32P-labeled bromodeoxyuridine-substituted consensus dioxin-responsive element. Similar cross-linking results were obtained using the nuclear extract from MCF-7 cells treated with [3H]TCDD alone. The results of this study suggest that there are at least two forms of the nuclear Ah receptor complex in MCF-7 cells; the major transcriptionally active form binds [3H]TCDD and flavones 1 or 2 inhibit nuclear uptake of this receptor complex. The other form of the nuclear Ah receptor complex appears to be transcriptionally inactive and ligand binding with [3H]TCDD is not competitively inhibited by flavones 1 and 2.

    Topics: Animals; Base Sequence; Breast Neoplasms; Cytochrome P-450 CYP1A1; Cytochrome P-450 Enzyme System; Cytosol; DNA, Neoplasm; Enzyme Induction; Female; Flavonoids; Humans; Liver; Male; Molecular Sequence Data; Oxidoreductases; Rats; Receptors, Aryl Hydrocarbon; Regulatory Sequences, Nucleic Acid; RNA, Messenger; Tumor Cells, Cultured

1995