3-(4-chlorophenyl)-adamantane-1-carboxylic-acid-(pyridin-4-ylmethyl)amide and Colitis

3-(4-chlorophenyl)-adamantane-1-carboxylic-acid-(pyridin-4-ylmethyl)amide has been researched along with Colitis* in 2 studies

Other Studies

2 other study(ies) available for 3-(4-chlorophenyl)-adamantane-1-carboxylic-acid-(pyridin-4-ylmethyl)amide and Colitis

ArticleYear
Development of hydroxy-based sphingosine kinase inhibitors and anti-inflammation in dextran sodium sulfate induced colitis in mice.
    Bioorganic & medicinal chemistry, 2016, 07-15, Volume: 24, Issue:14

    Sphingosine kinase (SphK)-catalyzed production of sphingosine-1-phosphate (S1P) regulates cell growth, survival and proliferation as well as inflammatory status in animals. In recent study we reported the N'-(3-(benzyloxy)benzylidene)-3,4,5-trihydroxybenzohydrazide scaffold as a potent SphK inhibitor. As a continuation of these efforts, 51 derivatives were synthesized and evaluated by SphK1/2 inhibitory activities for structure-activity relationship (SAR) study. Among them, 33 was identified as the most potent SphK inhibitor. Potency of 33 was also observed to efficiently decrease SphK1/2 expression in human colorectal cancer cells (HCT116) and significantly inhibit dextran sodium sulfate (DSS)-induced colitis as well as the decreased expression of interleukin (IL)-6 and cyclooxygenase-2 (COX-2) in mouse models. Collectively, 33 was validated as an effective SphK inhibitor, which can be served as anti-inflammatory agent to probably treat inflammatory bowel diseases in human.

    Topics: Animals; Colitis; Dextran Sulfate; Enzyme Inhibitors; HCT116 Cells; Humans; Mice; Phosphotransferases (Alcohol Group Acceptor); Structure-Activity Relationship

2016
Suppression of colitis-driven colon cancer in mice by a novel small molecule inhibitor of sphingosine kinase.
    Carcinogenesis, 2010, Volume: 31, Issue:10

    Sphingolipid metabolism is driven by inflammatory cytokines. These cascade of events include the activation of sphingosine kinase (SK), and subsequent production of the mitogenic and proinflammatory lipid sphingosine 1-phosphate (S1P). Overall, S1P is one of the crucial components in inflammation, making SK an excellent target for the development of new anti-inflammatory drugs. We have recently shown that SK inhibitors suppress colitis and hypothesize here that the novel SK inhibitor, ABC294640, prevents the development of colon cancer. In an azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model, there was a dose-dependent decrease in tumor incidence with SK inhibitor treatment. The tumor incidence (number of animals with tumors per group) in the vehicle, ABC294640 (20 mg/kg) and ABC294640 (50 mg/kg) groups were 80, 40 and 30%, respectively. Tumor multiplicity (number of tumors per animal) also decreased from 2.1 ± 0.23 tumors per animal in the AOM + DSS + vehicle group to 1.2 ± 0 tumors per animal in the AOM + DSS + ABC294640 (20 mg/kg) and to 0.8 ± 0.4 tumors per animal in the AOM + DSS + ABC294640 (50 mg/kg) group. Importantly, with ABC294640, there were no observed toxic side effects. To explore mechanisms, we isolated cells from the colon (CD45-, representing primarily colon epithelial cells) and (CD45+, representing primarily colon inflammatory cells) then measured known targets of SK that control cell survival. Results are consistent with the hypothesis that the inhibition of SK activity by our novel SK inhibitor modulates key pathways involved in cell survival and may be a viable treatment strategy for the chemoprevention colitis-driven colon cancer.

    Topics: Adamantane; Animals; Azoxymethane; Colitis; Colon; Colonic Neoplasms; Dextran Sulfate; Extracellular Signal-Regulated MAP Kinases; Lysophospholipids; Mice; Mice, Inbred C57BL; Phosphotransferases (Alcohol Group Acceptor); Proto-Oncogene Proteins c-akt; Pyridines; Sphingosine

2010