3-(4-5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium and Neoplasms

3-(4-5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium has been researched along with Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for 3-(4-5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2h-tetrazolium and Neoplasms

ArticleYear
Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae.
    The British journal of nutrition, 2012, Volume: 107, Issue:9

    Epidemiological evidence shows that regular consumption of Brassicaceae is associated with a reduced risk of cancer and heart disease. Cruciferous species are usually processed before eating and the real impact of cooking practices on their bioactive properties is not fully understood. We have evaluated the effect of common cooking practices (boiling, microwaving, and steaming) on the biological activities of broccoli, cauliflower and Brussels sprouts. Anti-proliferative and chemoprotective effects towards DNA oxidative damage of fresh and cooked vegetable extracts were evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium and Comet assays on HT-29 human colon carcinoma cells. The fresh vegetable extracts showed the highest anti-proliferative and antioxidant activities on HT-29 cells (broccoli>cauliflower = Brussels sprouts). No genotoxic activity was detected in any of the samples tested. The cooking methods that were applied influenced the anti-proliferative activity of Brassica extracts but did not alter considerably the antioxidant activity presented by the raw vegetables. Raw, microwaved, boiled (except broccoli) and steamed vegetable extracts, at different concentrations, presented a protective antioxidative action comparable with vitamin C (1 mm). These data provide new insight into the influence of domestic treatment on the quality of food, which could support the recent epidemiological studies suggesting that consumption of cruciferous vegetables, mainly cooked, may be related to a reduced risk of developing cancer.

    Topics: Anticarcinogenic Agents; Antioxidants; Brassica; Cell Proliferation; Comet Assay; Cooking; DNA Damage; HT29 Cells; Humans; Mutagens; Neoplasms; Nutritional Sciences; Oxidative Stress; Tetrazolium Salts; Thiazoles; Vegetables

2012
Paradoxical proliferative potential of iron (II) sulphate on cancer cells after the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay.
    International journal of molecular medicine, 2007, Volume: 19, Issue:6

    There are several scientific approaches for the determination of cellular growth influences of known or novel substances under in vitro conditions, among which colourimetric absorption measurement is considered to be one of the convenient methods. [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] (MTS) assay is one of the commonly used colourimetric absorption assays based on the ability of dehydrogenase from viable cells to produce the brown soluble formazan detectable at 490 nm. Here we have tested the possible growth influence of iron (II) sulphate on two human cancer cell lines, the K562 chronic myelogenous leukaemia and T47D breast carcinoma cells, based on the MTS assay. We found that iron (II) sulphate possessed an inhibitory effect when added at 16- to 125-microM concentrations, but iron (II) sulphate became growth stimulatory when its concentration was further increased to 1000 microM. In addition, a dose-dependent increase in absorbance at the same wavelength was observed when we repeated the experiments without the addition of MTS and phenazine methosulfate. When we further repeated the cell growth determinations using adenosine triphosphate content assay for K562 and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay for T47D, iron (II) sulphate showed a consistent dose-dependent growth inhibitory effect. Morphological investigation after methylene blue staining clearly demonstrated that iron (II) sulphate, at a concentration of 1000 microM, is cytotoxic to T47D cells. Interestingly, a consistent increment for the absorbance at 490 nm was further observed with increased iron (II) sulphate concentration either in the presence or absence of MTS even in a cell-free environment. Thus we conclude that iron (II) sulphate is actually growth inhibitory and even cytotoxic at high concentrations towards the K562 and T47D cancer cells and the paradoxical proliferative activity of iron (II) sulphate on these two cancer cell lines using the MTS assay was solely due to the oxidation of initial pale green iron (II) to brownish iron (III) during incubation in the aqueous condition.

    Topics: Breast Neoplasms; Carcinoma; Cell Proliferation; Colony-Forming Units Assay; Humans; Iron Compounds; K562 Cells; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Neoplasms; Sulfates; Tetrazolium Salts; Thiazoles; Tumor Cells, Cultured

2007