3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol has been researched along with Brain-Injuries* in 2 studies
2 other study(ies) available for 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol and Brain-Injuries
Article | Year |
---|---|
Early increase of cannabinoid receptor density after experimental traumatic brain injury in the newborn piglet.
Paediatric traumatic brain injury (TBI) is a leading cause of death and disability. Previous studies showed neuroprotection after TBI by (endo)cannabinoid mechanisms, suggesting involvement of cannabinoid receptors (CBR). We therefore determined CBR densities and expression of the translocator protein 18 kDA (TSPO) in newborn piglets after experimental TBI. Newborn female piglets were subjected to sham operation (n=6) or fluid-percussion (FP) injury (n=7) under controlled physiological conditions. After six hours, brains were frozen, sagittally cut and incubated with radioligands for CBR ([3HCP-55,940, [3H]SR141716A) and TSPO ([3H]PK11195), an indicator of gliosis/brain injury. Early after injury, FP-TBI elicited a significant ICP increase at a temporary reduced cerebral perfusion pressure; however, CBF and CMRO2 remained within physiological range. At 6 hours post injury, we found a statistically significant increase in binding of the non-selective agonist [3H]CP-55,940 in 15 of the 24 investigated brain regions of injured animals. By contrast, no significant changes in binding of the CB1R-selective antagonist [3H]SR141716A were observed. A non-significant trend towards increased binding of [3H]PK11195 was observed, suggesting an incipient microglial activation. We therefore conclude that in this model and time span after injury, the increase in [3H]CP-55,940 binding reflects changes in CB2R density, while CB1R density is not affected. The results may provide explanation for the neuroprotective properties of cannabinoid ligands and future therapeutic strategies of TBI. Topics: Analysis of Variance; Animals; Animals, Newborn; Autoradiography; Brain; Brain Injuries; Cannabinoid Receptor Modulators; Cyclohexanols; Disease Models, Animal; Female; Isoquinolines; Piperidines; Protein Binding; Pyrazoles; Radionuclide Imaging; Receptors, Cannabinoid; Receptors, GABA; Rimonabant; Swine; Time Factors; Tritium | 2014 |
Characterization of the diarylether sulfonylester (-)-(R)-3-(2-hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) as a potent cannabinoid receptor agonist with neuroprotective properties.
(-)-(R)-3-(2-Hydroxymethylindanyl-4-oxy)phenyl-4,4,4-trifluoro-1-sulfonate (BAY 38-7271) is a new high-affinity cannabinoid receptor subtype 1 (CB1 receptor) ligand (K(i) = 0.46-1.85 nM; rat brain, human cortex, or recombinant human CB1 receptor), structurally unrelated to any cannabinoid receptor ligand known so far. BAY 38-7271 was characterized as a CB1 receptor agonist in 5-[gamma(35)S]-thiophosphate triethylammonium salt binding assays using rat or human CB1 receptors. In the rat hypothermia assay, BAY 38-7271 induced a dose-dependent reduction in body temperature (minimal effective dose = 6 microg/kg, i.v.); whereas in rats trained to discriminate the CB1/CB2 receptor agonist (-)-cis-3-[2-hydroxy-4(1,1-dimethyl-heptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol (CP 55,940; 0.03 mg/kg, i.p.) from vehicle, BAY 38-7271 induced complete generalization (3 microg/kg, i.v.). In both in vivo models, a specific CB1 receptor-mediated mechanism was confirmed by demonstrating that the effects of CP 55,940 and BAY 38-7271 were blocked by pretreatment with the selective CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride. In the rat traumatic brain injury model, BAY 38-7271 demonstrated highly potent and efficient neuroprotective properties when administered as a 4-h infusion immediately after induction of subdural hematoma (70% infarct volume reduction at 100 ng/kg/h). Even when applied with a 3-h delay, a significant neuroprotective efficacy could be observed (59% infarct volume reduction at 300 ng/kg/h). The neuroprotective potential of BAY 38-7271 was confirmed in a rat model of focal cerebral ischemia induced by permanent occlusion of the middle cerebral artery. It is concluded that the CB1/CB2 receptor agonist BAY 38-7271 shows pronounced neuroprotective properties that do not result from drug-induced hypothermia and that occur in a dose range devoid of typical cannabinoid-like side effects. Topics: Animals; Binding, Competitive; Body Temperature; Brain Injuries; Brain Ischemia; Cyclohexanols; Discrimination, Psychological; Guanosine 5'-O-(3-Thiotriphosphate); Hematoma, Subdural; Indans; Male; Middle Cerebral Artery; Neuroprotective Agents; Rats; Rats, Long-Evans; Rats, Wistar; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction; Succinate Dehydrogenase; Sulfonic Acids | 2002 |