3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol has been researched along with Alcoholism* in 2 studies
2 other study(ies) available for 3-(2-hydroxy-4-(1-1-dimethylheptyl)phenyl)-4-(3-hydroxypropyl)cyclohexanol and Alcoholism
Article | Year |
---|---|
Genetic and pharmacological manipulations of the CB(1) receptor alter ethanol preference and dependence in ethanol preferring and nonpreferring mice.
Recent studies have indicated a role for the endocannabinoid system in ethanol-related behaviors. This study examined the effect of pharmacological activation, blockade, and genetic deletion of the CB(1) receptors on ethanol-drinking behavior in ethanol preferring C57BL/6J (B6) and ethanol nonpreferring DBA/2J (D2) mice. The deletion of CB(1) receptor significantly reduced the ethanol preference. Although the stimulation of the CB(1) receptor by CP-55,940 markedly increased the ethanol preference, this effect was found to be greater in B6 than in D2 mice. The antagonism of CB(1) receptor function by SR141716A led to a significant reduction in voluntary ethanol preference in B6 than D2 mice. A significant lower hypothermic and greater sedative response to acute ethanol administration was observed in both the strains of CB(1) -/- mice than wild-type mice. Interestingly, genetic deletion and pharmacological blockade of the CB(1) receptor produced a marked reduction in severity of handling-induced convulsion in both the strains. The radioligand binding studies revealed significantly higher levels of CB(1) receptor-stimulated G-protein activation in the striatum of B6 compared to D2 mice. Innate differences in the CB(1) receptor function might be one of the contributing factors for higher ethanol drinking behavior. The antagonists of the CB(1) receptor may have therapeutic potential in the treatment of ethanol dependence. Topics: Alcohol-Induced Disorders, Nervous System; Alcoholism; Analgesics; Animals; Binding, Competitive; Brain; Cyclohexanols; Disease Models, Animal; Genetic Predisposition to Disease; Male; Mice; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Knockout; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, G-Protein-Coupled; Rimonabant; Species Specificity | 2008 |
Elevated levels of endocannabinoids and CB1 receptor-mediated G-protein signaling in the prefrontal cortex of alcoholic suicide victims.
Alcoholism is often comorbid with mood disorders and suicide. We recently reported an upregulation of CB(1) receptor-mediated signaling in the dorsolateral prefrontal cortex (DLPFC) of subjects with major depression who died by suicide. In the present study, we sought to determine whether the changes in depressed suicides would also be present in alcoholic suicides and whether the endocannabinoid (EC) system plays a role in suicide in alcoholism.. The density of CB(1) receptor and its mediated [(35)S]GTP gamma S signaling were measured in the DLPFC of alcoholic suicides (AS) (n = 11) and chronic alcoholics (CA) (n = 11). The levels of ECs were measured by a liquid chromatograph/mass spectrometry.. The CB(1) receptor density was higher in AS compared with the CA group in the DLPFC. Western blot analysis confirmed a greater immunoreactivity of the CB(1) receptor in AS. The CB(1) receptor-mediated [(35)S]GTP gamma S binding indicated a greater signaling in AS. Higher levels of N-arachidonyl ethanolamide and 2-arachidonylglycerol were observed in the DLPFC of AS.. The elevated levels of ECs, CB(1) receptors, and CB(1) receptor-mediated [(35)S]GTP gamma S binding strongly suggest a hyperactivity of endocannabinoidergic signaling in AS. EC system may be a novel therapeutic target for the treatment of suicidal behavior. Topics: Adolescent; Adult; Aged; Alcoholism; Binding, Competitive; Blotting, Western; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Cyclohexanols; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Female; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Male; Mass Spectrometry; Middle Aged; Prefrontal Cortex; Radioligand Assay; Receptor, Cannabinoid, CB1; Suicide; Sulfur Isotopes; Tritium | 2005 |