3-(2-4-dichlorobenzyl)-2-methyl-n-(pentylsulfonyl)-3-h-benzimidazole-5-carboxamide has been researched along with Insulin-Resistance* in 5 studies
5 other study(ies) available for 3-(2-4-dichlorobenzyl)-2-methyl-n-(pentylsulfonyl)-3-h-benzimidazole-5-carboxamide and Insulin-Resistance
Article | Year |
---|---|
Mechanism by which a novel non-thiazolidinedione peroxisome proliferator-activated receptor gamma agonist, FK614, ameliorates insulin resistance in Zucker fatty rats.
The aim of this study was to examine the mechanism by which a novel non-thiazolidinedione (TZD) peroxisome proliferator-activated receptor (PPAR) gamma agonist, FK614, ameliorates insulin resistance in Zucker fatty rats.. FK614 (1, 3.2 or 10 mg/kg) and a TZD PPARgamma agonist, pioglitazone (1, 3.2 or 10 mg/kg), were orally administered to Zucker fatty rats (genetically obese and insulin resistant) once a day for 14 days, and an oral glucose tolerance test was performed. The expression levels of various genes in the white adipose tissue (WAT) of Zucker fatty rats treated with FK614 (3.2 mg/kg), pioglitazone (10 mg/kg) and another TZD PPARgamma agonist, rosiglitazone (3.2 mg/kg), were determined using a real-time reverse transcription-polymerase chain reaction method. Morphometric analysis of the WAT of Zucker fatty rats treated with FK614 (3.2 mg/kg) and pioglitazone (10 mg/kg) was performed. Glucose transport activity in the isolated soleus muscle of FK614-treated Zucker fatty rats was also investigated.. FK614 and pioglitazone both improved glucose tolerance in Zucker fatty rats. FK614 significantly increased the expression levels of acyl CoA oxidase, a PPAR-responsive gene, and adipocyte fatty acid-binding protein (aP2), an adipocyte differentiation marker gene, in epididymal WAT. It also significantly decreased the level of gene expression of tumour necrosis factor-alpha, an insulin resistance-inducing factor in retroperitoneal WAT, as did pioglitazone and rosiglitazone. FK614 and pioglitazone both significantly increased the total number of adipocytes and decreased their average size in WAT, mainly by increasing the number of small adipocytes. Additionally, administration of FK614 to Zucker fatty rats enhanced insulin sensitivity for glucose uptake in the soleus muscle.. This study suggests the possibility that FK614 induces adipocyte differentiation in Zucker fatty rats by stimulating PPARgammain vivo, thereby changing the character of WAT and improving insulin sensitivity throughout the body. Topics: Acyl-CoA Oxidase; Adipocytes, White; Adipose Tissue; Administration, Oral; Animals; Benzimidazoles; Biological Transport; Cell Count; Cell Size; Epididymis; Fatty Acid-Binding Proteins; Gene Expression; Glucose; Glucose Tolerance Test; Hypoglycemic Agents; Insulin Resistance; Male; Muscle, Skeletal; Obesity; Pioglitazone; PPAR gamma; Rats; Rats, Zucker; Rosiglitazone; Thiazolidinediones | 2007 |
A selective peroxisome proliferator-activated receptor gamma modulator with distinct fat cell regulation properties.
Adipogenesis is an important process for the improvement of insulin resistance by peroxisome proliferator-activated receptor (PPAR) gamma agonists, such as rosiglitazone and pioglitazone. FK614 [3-(2,4-dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3-Hbenzimidazole-5-carboxamide] is a structurally novel class of PPARgamma agonist that improves insulin sensitivity in animal models of type 2 diabetes. Herein, we characterize FK614, a selective PPARgamma modulator (SPPARM) with differential properties affecting the regulation of fat cell function. FK614 behaves as a partial agonist in inducing the interaction of PPARgamma with both transcriptional coactivators, cAMP response element-binding protein-binding protein and steroid receptor coactivator-1, but as a full agonist with both PPAR-binding protein and PPAR-interacting protein, which are required for PPARgamma-mediated adipogenesis. In the differentiating 3T3-L1 adipocytes, the levels of adipose fatty acid-binding protein (aP2) mRNA expression and triglyceride accumulation induced by FK614 were as efficacious as those of rosiglitazone and pioglitazone. In contrast, the effect of FK614 on aP2 gene expression in mature adipocytes was less than that of the other PPARgamma agonists. Furthermore, the long-term treatment of mature adipocytes with rosiglitazone and pioglitazone reduced the expression of phosphodiesterase 3B, the down-regulation of which has an important role in the development of insulin resistance; however, FK614 had no such effect in mature adipocytes. Thus, FK614 behaves as an SPPARM with differential effects on the activation of PPARgamma at each stage of adipocyte differentiation. The stage-dependent selectivity of FK614 may contribute to its enhanced insulin sensitization in differentiating adipocytes and to reduced insulin resistance at the stage of adipocyte hypertrophy. Topics: 3',5'-Cyclic-AMP Phosphodiesterases; 3T3 Cells; Adipocytes; Animals; Benzimidazoles; Cell Differentiation; Chlorocebus aethiops; Collagen; Cyclic Nucleotide Phosphodiesterases, Type 3; Gels; Gene Expression; Hypoglycemic Agents; Insulin Resistance; Mice; Obesity; Pioglitazone; Plasmids; PPAR gamma; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Rosiglitazone; Thiazolidinediones; Triglycerides | 2006 |
Ameliorating effect of FK614, a novel nonthiazolidinedione peroxisome proliferator-activated receptor gamma agonist, on insulin resistance in Zucker fatty rat.
Effect of 3-(2,4-dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3H-benzimidazole-5-carboxamide (FK614), a novel nonthiazolidinedione peroxisome proliferator-activated receptor (PPAR) gamma agonist, on glucose tolerance and insulin resistance in peripheral tissues and in liver using Zucker fatty rats (genetically obese and insulin-resistant) was evaluated and compared to other insulin sensitizers. FK614 (0.32, 1 and 3.2 mg/kg), two thiazolidinedione PPAR gamma agonists, rosiglitazone (0.1, 0.32, 1 and 3.2 mg/kg) and pioglitazone (1, 3.2 and 10 mg/kg), and a biguanide, metformin (320 and 1000 mg/kg), were orally administered to Zucker fatty rats once a day for 14 days. Zucker fatty rats treated with FK614 and rosiglitazone were subjected to evaluation by oral glucose tolerance test. Ameliorating effect of each compound on peripheral and hepatic insulin resistance was evaluated using a euglycemic-hyperinsulineamic clamp procedure. FK614 and rosiglitazone dose-dependently improved impaired glucose tolerance in Zucker fatty rats. In addition, FK614 dose-dependently ameliorated peripheral and hepatic insulin resistance in Zucker fatty rats, with the degree of its effect in peripheral tissues almost equivalent to that in liver when compared at each dose tested. Similar data indicating ameliorating effects on insulin resistance was obtained for rosiglitazone and pioglitazone. Metformin showed less potent effects than other insulin sensitizers and its effect in liver tended to be greater than that in peripheral tissues. These findings suggest clinical potential for FK614 as a treatment of type 2 diabetes, acting by ameliorating insulin resistance both in peripheral tissues and liver. Topics: Administration, Oral; Animals; Benzimidazoles; Blood Glucose; Dose-Response Relationship, Drug; Glucose; Glucose Intolerance; Glucose Tolerance Test; Hypoglycemic Agents; Insulin; Insulin Resistance; Liver; Male; Metformin; Pioglitazone; PPAR gamma; Rats; Rats, Zucker; Rosiglitazone; Thiazolidinediones; Time Factors | 2005 |
FK-614, a selective peroxisome proliferator-activated receptor gamma agonist, improves peripheral glucose utilization while decreasing hepatic insulin extraction in alloxan-induced diabetic dogs.
This is the first report of the effects of a nonthiazolidinedione activator of peroxisome proliferator-activated receptor (PPAR) gamma, that is, FK-614 (a benzimidazole derivative), on glucose metabolism in vivo. To investigate the effect of FK-614 on peripheral and hepatic insulin action, we performed hyperinsulinemic-hyperglycemic clamp studies combined with the triple-catheter technique and a double-tracer approach in alloxan-diabetic dogs with (n=5) or without (n=6) treatment with FK-614 (0.32 mg/kg per day orally for 10 days). Throughout the experiment, insulin was infused intraportally at 18 pmol/kg per minute and hyperglycemia (approximately 11 mmol/L) was maintained by a peripheral glucose infusion. After a 45-minute basal period (period I), a portal infusion of glucose labeled with [U-14C]-glucose, was administered for 120 minutes (period II) to measure hepatic glucose uptake. This was followed by 90-minute recovery (period III). FK-614 marginally improved peripheral insulin sensitivity, did not affect hepatic glucose uptake, and surprisingly increased tracer-determined hepatic glucose production (19.0+/-5.0 vs 10.6+/-1.7 mumol/kg per minute, P<.001). Hepatic insulin extraction was decreased by FK-614 (47.8%+/-1.6% vs 55.9%+/-3.4%, P<.01), which led to greater peripheral insulin levels and glucose utilization. FK-614 treatment also decreased the daily insulin requirements (regular insulin, 0.18+/-0.01 vs 0.32+/-0.01 U/kg per day; and NPH insulin, 0.53+/-0.02 vs 0.89+/-0.04 U/kg per day; P<.001) to maintain fasting plasma glucose at approximately 10 mmol/L for 7 days before the experiments. We conclude that FK-614 treatment, at the dose used, improves peripheral glucose utilization because of an improvement in peripheral insulin sensitivity and a decrease in insulin clearance, but impairs hepatic insulin action in alloxan-induced diabetic dogs. The reason for the effects of FK-614 on hepatic glucose and insulin metabolism is unclear but they are both consistent with reports of hepatic steatosis by PPARgamma activation when unopposed by concomitant activation of PPARalpha. Topics: Animals; Benzimidazoles; Blood Glucose; Blood Pressure; Diabetes Mellitus, Experimental; Dogs; Fatty Acids, Nonesterified; Glucagon; Glucose; Glucose Clamp Technique; Hyperinsulinism; Hypoglycemic Agents; Insulin; Insulin Resistance; Insulin, Isophane; Liver; Male; PPAR gamma; Tritium | 2005 |
Pharmacological characteristics of a novel nonthiazolidinedione insulin sensitizer, FK614.
We evaluated antidiabetic effects of 3-(2,4-dichlorobenzyl)-2-methyl-N-(pentylsulfonyl)-3 H-benzimidazole-5-carboxamide (FK614), a benzimidazole derivative without a thiazolidinedione structure, which was obtained using C57BL/KsJ-db/db mice (db/db mice). In db/db mice, the potency of FK614 for hypoglycemic effect was comparable to that of rosiglitazone and approximately 15-fold greater than that of pioglitazone. FK614 also showed a potent attenuating effect on hypertriglyceridemia in db/db mice, as well as rosiglitazone and pioglitazone. In C57BL/6J-ob/ob mice (ob/ob mice), ED(50) values of FK614 and pioglitazone for hypoinsulinemic effect were 1.3 and 11.8 mg/kg, respectively. FK614 also improved the impaired glucose tolerance in ob/ob mice. In normal rats, FK614 did not influence plasma glucose and insulin levels but significantly decreased both plasma triglyceride and nonesterified fatty acid levels. FK614 was found to activate peroxisome proliferator-activated receptor (PPAR)gamma-mediated transcriptional activity in the reporter gene assay as well as thiazolidinedione derivatives, although its maximum effect was less than that of thiazolidinedione derivatives. In rat toxicity studies, hemodilution effects for FK614 were less than that for rosiglitazone. Overall, these studies suggest that FK614 improves insulin resistance in such animal models through activation of PPARgamma-mediated transcriptional activity and that it would be a new therapeutic candidate with potential for the treatment of type 2 diabetic patients. Topics: Animals; Benzimidazoles; Blood Glucose; Cell Line; Diabetes Mellitus, Type 2; Female; Hypoglycemic Agents; Insulin; Insulin Resistance; Lipids; Male; Mice; Mice, Inbred C57BL; Pioglitazone; Plasmids; PPAR gamma; Rats; Rats, Sprague-Dawley; Thiazolidinediones; Transcription, Genetic; Transfection | 2004 |