3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole and Protein-Aggregation--Pathological

3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole has been researched along with Protein-Aggregation--Pathological* in 2 studies

Reviews

1 review(s) available for 3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole and Protein-Aggregation--Pathological

ArticleYear
Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.

    Topics: alpha-Synuclein; Amyloidogenic Proteins; Drug Discovery; Humans; Protein Aggregation, Pathological; Structure-Activity Relationship

2019

Other Studies

1 other study(ies) available for 3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole and Protein-Aggregation--Pathological

ArticleYear
Effects of pharmacological modulators of α-synuclein and tau aggregation and internalization.
    Scientific reports, 2020, 07-30, Volume: 10, Issue:1

    Parkinson's disease (PD) and Alzheimer's disease (AD) are common neurodegenerative disorders of the elderly and, therefore, affect a growing number of patients worldwide. Both diseases share, as a common hallmark, the accumulation of characteristic protein aggregates, known as Lewy bodies (LB) in PD, and neurofibrillary tangles in AD. LBs are primarily composed of misfolded α-synuclein (aSyn), and neurofibrillary tangles are primarily composed of tau protein. Importantly, upon pathological evaluation, most AD and PD/Lewy body dementia cases exhibit mixed pathology, with the co-occurrence of both LB and neurofibrillary tangles, among other protein inclusions. Recent studies suggest that both aSyn and tau pathology can spread and propagate through neuronal connections. Therefore, it is important to investigate the mechanisms underlying aggregation and propagation of these proteins for the development of novel therapeutic strategies. Here, we assessed the effects of different pharmacological interventions on the aggregation and internalization of tau and aSyn. We found that anle138b and fulvic acid decrease aSyn and tau aggregation, that epigallocatechin gallate decreases aSyn aggregation, and that dynasore reduces tau internalization. Establishing the effects of small molecules with different chemical properties on the aggregation and spreading of aSyn and tau will be important for the development of future therapeutic interventions.

    Topics: alpha-Synuclein; Alzheimer Disease; Benzodioxoles; Benzopyrans; Brain; Catechin; Cells, Cultured; Humans; Hydrazones; Lewy Bodies; Molecular Targeted Therapy; Neurofibrillary Tangles; Parkinson Disease; Protein Aggregates; Protein Aggregation, Pathological; Pyrazoles; tau Proteins

2020