3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole and Multiple-System-Atrophy

3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole has been researched along with Multiple-System-Atrophy* in 2 studies

Other Studies

2 other study(ies) available for 3-(1-3-benzodioxol-5-yl)-5-(3-bromophenyl)-1h-pyrazole and Multiple-System-Atrophy

ArticleYear
Targeting α-synuclein by PD03 AFFITOPE® and Anle138b rescues neurodegenerative pathology in a model of multiple system atrophy: clinical relevance.
    Translational neurodegeneration, 2020, 09-24, Volume: 9, Issue:1

    Misfolded oligomeric α-synuclein plays a pivotal role in the pathogenesis of α-synucleinopathies including Parkinson's disease and multiple system atrophy, and its detection parallels activation of microglia and a loss of neurons in the substantia nigra pars compacta. Here we aimed to analyze the therapeutic efficacy of PD03, a new AFFITOPE® immunotherapy approach, either alone or in combination with Anle138b, in a PLP-α-syn mouse model.. The PLP-α-syn mice were treated with PD03 immunotherapy, Anle138b, or a combination of two. Five months after study initiation, the mice underwent behavioral testing and were sacrificed for neuropathological analysis. The treatment groups were compared to the vehicle group with regard to motor performance, nigral neuronal loss, microglial activation and α-synuclein pathology.. The PLP-α-syn mice receiving the PD03 or Anle138b single therapy showed improvement of gait deficits and preservation of nigral dopaminergic neurons associated with the reduced α-synuclein oligomer levels and decreased microglial activation. The combined therapy with Anle138b and PD03 resulted in lower IgG binding in the brain as compared to the single immunotherapy with PD03.. PD03 and Anle138b can selectively target oligomeric α-synuclein, resulting in attenuation of neurodegeneration in the PLP-α-syn mice. Both approaches are potential therapies that should be developed further for disease modification in α-synucleinopathies.

    Topics: alpha-Synuclein; Animals; Benzodioxoles; Drug Delivery Systems; Female; Immunologic Factors; Male; Mice; Mice, Transgenic; Multiple System Atrophy; Neurodegenerative Diseases; Pyrazoles

2020
Anle138b modulates α-synuclein oligomerization and prevents motor decline and neurodegeneration in a mouse model of multiple system atrophy.
    Movement disorders : official journal of the Movement Disorder Society, 2019, Volume: 34, Issue:2

    MSA is a fatal neurodegenerative disease characterized by autonomic failure and severe motor impairment. Its main pathological hallmark is the accumulation of α-synuclein in oligodendrocytes, leading to glial and neuronal dysfunction and neurodegeneration. These features are recapitulated in the PLP-hαSyn mouse model expressing human α-synuclein in oligodendrocytes. At present, there is no effective disease-modifying therapy. Previous experiments have shown that the aggregation inhibitor, anle138b, reduces neurodegeneration and behavioral deficits in mouse models of other proteinopathies.. To test the therapeutic potential of anle138b in a mouse model of MSA.. Two-month-old PLP-hαSyn mice were fed over a period of 4 months with pellets containing anle138b at two different doses (0.6 and 2 g/kg) and compared to healthy controls and PLP-hαSyn mice fed with placebo pellets. At the end of the treatment, behavioral and histological analyses were performed.. We observed a reversal of motor function to healthy control levels when PLP-hαSyn mice were treated with both doses of anle138b. Histological and molecular analyses showed a significant reduction in α-synuclein oligomers and glial cytoplasmic inclusions in animals fed with anle138b compared to nontreated mice. These animals also present preservation of dopaminergic neurons and reduction in microglial activation in SN correlating with the α-synuclein reduction observed.. Anle138b reduces α-synuclein accumulation in PLP-hαSyn mice, leading to neuroprotection, reduction of microglial activation, and preservation of motor function supporting the use of anle138b in a future clinical trial for MSA. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

    Topics: alpha-Synuclein; Animals; Benzodioxoles; Disease Models, Animal; Mice, Transgenic; Movement Disorders; Multiple System Atrophy; Nerve Degeneration; Neuroglia; Neurons; Oligodendroglia; Pyrazoles

2019