3-((3-trifluoromethyl)phenyl)-5-((3-carboxyphenyl)methylene)-2-thioxo-4-thiazolidinone and Polycystic-Kidney--Autosomal-Dominant

3-((3-trifluoromethyl)phenyl)-5-((3-carboxyphenyl)methylene)-2-thioxo-4-thiazolidinone has been researched along with Polycystic-Kidney--Autosomal-Dominant* in 1 studies

Other Studies

1 other study(ies) available for 3-((3-trifluoromethyl)phenyl)-5-((3-carboxyphenyl)methylene)-2-thioxo-4-thiazolidinone and Polycystic-Kidney--Autosomal-Dominant

ArticleYear
Early embryonic renal tubules of wild-type and polycystic kidney disease kidneys respond to cAMP stimulation with cystic fibrosis transmembrane conductance regulator/Na(+),K(+),2Cl(-) Co-transporter-dependent cystic dilation.
    Journal of the American Society of Nephrology : JASN, 2006, Volume: 17, Issue:12

    Metanephric organ culture has been used to determine whether embryonic kidney tubules can be stimulated by cAMP to form cysts. Under basal culture conditions, wild-type kidneys from embryonic day 13.5 to 15.5 mice grow in size and continue ureteric bud branching and tubule formation over a 4- to 5-d period. Treatment of these kidneys with 8-Br-cAMP or the cAMP agonist forskolin induced the formation of dilated tubules within 1 h, which enlarged over several days and resulted in dramatically expanded cyst-like structures of proximal tubule and collecting duct origin. Tubule dilation was reversible upon withdrawal of 8-Br-cAMP and was inhibited by the cAMP-dependent protein kinase inhibitor H89 and the cystic fibrosis transmembrane conductance regulator (CFTR) inhibitor CFTR(inh)172. For further testing of the role of CFTR, metanephric cultures were prepared from mice with a targeted mutation of the Cftr gene. In contrast to kidneys from wild-type mice, those from Cftr -/- mice showed no evidence of tubular dilation in response to 8-Br-cAMP, indicating that CFTR Cl(-) channels are functional in embryonic kidneys and are required for cAMP-driven tubule expansion. A requirement for transepithelial Cl(-) transport was demonstrated by inhibiting the basolateral Na(+),K(+),2Cl(-) co-transporter with bumetanide, which effectively blocked all cAMP-stimulated tubular dilation. For determination of whether cystic dilation occurs to a greater extent in PKD kidneys in response to cAMP, Pkd1(m1Bei) -/- embryonic kidneys were treated with 8-Br-cAMP and were found to form rapidly CFTR- and Na(+),K(+),2Cl(-) co-transporter-dependent cysts that were three- to six-fold larger than those of wild-type kidneys. These results suggest that cAMP can stimulate fluid secretion early in renal tubule development during the time when renal cysts first appear in PKD kidneys and that PKD-deficient renal tubules are predisposed to abnormally increased cyst expansion in response to elevated levels of cAMP.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Amides; Animals; Benzoates; Colforsin; Cyclic AMP; Cystic Fibrosis Transmembrane Conductance Regulator; Kidney Tubules; Mice; Mice, Inbred C57BL; Mice, Knockout; Organ Culture Techniques; Polycystic Kidney Diseases; Polycystic Kidney, Autosomal Dominant; Sodium Potassium Chloride Symporter Inhibitors; Sodium-Potassium-Chloride Symporters; Thiazolidines; TRPP Cation Channels

2006