Page last updated: 2024-08-21

2h-benzo(a)quinolizin-2-ol, 2-ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- and Nerve Degeneration

2h-benzo(a)quinolizin-2-ol, 2-ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- has been researched along with Nerve Degeneration in 2 studies

Research

Studies (2)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (100.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Moy, LY; Sonsalla, PK; Zeevalk, GD1
German, DC; Lane, K; Liang, CL; Manaye, KF; Sonsalla, PK1

Other Studies

2 other study(ies) available for 2h-benzo(a)quinolizin-2-ol, 2-ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy- and Nerve Degeneration

ArticleYear
Role for dopamine in malonate-induced damage in vivo in striatum and in vitro in mesencephalic cultures.
    Journal of neurochemistry, 2000, Volume: 74, Issue:4

    Topics: 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-; 3,4-Dihydroxyphenylacetic Acid; Adrenergic Uptake Inhibitors; Animals; Biological Transport; Carbon Radioisotopes; Cells, Cultured; Corpus Striatum; Dopamine; Energy Metabolism; Free Radicals; gamma-Aminobutyric Acid; Lactic Acid; Male; Malonates; Membrane Glycoproteins; Membrane Transport Proteins; Mice; Microdialysis; Nerve Degeneration; Neurons; Neuropeptides; Parkinson Disease; Presynaptic Terminals; Synaptic Vesicles; Tetrabenazine; Tritium; Vesicular Biogenic Amine Transport Proteins

2000
Pharmacological inactivation of the vesicular monoamine transporter can enhance 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of midbrain dopaminergic neurons, but not locus coeruleus noradrenergic neurons.
    Neuroscience, 2000, Volume: 101, Issue:4

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; 2H-Benzo(a)quinolizin-2-ol, 2-Ethyl-1,3,4,6,7,11b-hexahydro-3-isobutyl-9,10-dimethoxy-; Animals; Cell Count; Drug Synergism; Locus Coeruleus; Male; Membrane Glycoproteins; Membrane Transport Proteins; Mesencephalon; Mice; Nerve Degeneration; Neurons; Neuropeptides; Norepinephrine; Tetrabenazine; Vesicular Biogenic Amine Transport Proteins; Vesicular Monoamine Transport Proteins

2000