25-hydroxyvitamin-d-2 has been researched along with Intestinal-Diseases* in 1 studies
1 other study(ies) available for 25-hydroxyvitamin-d-2 and Intestinal-Diseases
Article | Year |
---|---|
Bone deficits in parenteral nutrition-dependent infants and children with intestinal failure are attenuated when accounting for slower growth.
The aim of the present study was to determine whether bone mineral content (BMC) and density (BMD) of infants and children with parenteral nutrition (PN)-dependent intestinal failure (IF) is lower than healthy controls, and investigate potential causes of lower BMC and BMD.. We performed a cross-sectional study comparing infants and children with PN-dependent IF with duos of age-, sex-, and race-matched controls. Lumbar spine BMC and BMD were measured by dual-energy x-ray absorptiometry, and serum cytokines, aluminum, insulin-like growth factor-1 (IGF-1), IGF-binding protein 3 (IGF-BP3), parathyroid hormone, 25-hydroxy vitamin D, and 1,25-dihydroxy vitamin D were measured. Generalized estimating equation models accounting for matching were used for comparisons.. BMC was 15% and BMD was 12% lower in IF participants than in controls (P ≤ 0.004). Group differences were attenuated to 3% and 7% and were not statistically significant (P = 0.40 and P = 0.07) when adjusted for length and weight; length- and weight-for-age were lower in IF than in control participants (12.5% vs 63%; 29.5% vs 54%, P ≤ 0.03). IF participants had higher serum aluminum (23 vs 7 μg/L, P < 0.0001), IGF-1 (97 vs 64 ng/mL, P = 0.04), and 25-hydroxy vitamin D concentrations (40 vs 30 ng/mL, P = 0.0005), and lower IGF-BP3 (1418 vs 1812 ng/mL, P < 0.0001) and parathyroid hormone concentrations (51 vs 98 pg/mL, P = 0.0002) than controls. There was no difference in serum cytokine concentrations (P ≥ 0.09).. Growth retardation is a significant problem for patients with PN-dependent IF. Additional investigation is needed to elucidate the cause and its effect on bone mass and density, especially the role of IGF-1 resistance and aluminum toxicity. Topics: 25-Hydroxyvitamin D 2; Aluminum; Bone Density; Bone Development; Bone Diseases; Calcifediol; Child; Child Development; Child, Preschool; Cross-Sectional Studies; Female; Growth Disorders; Humans; Infant; Insulin-Like Growth Factor I; Intestinal Diseases; Intestines; Male; Parathyroid Hormone; Parenteral Nutrition | 2013 |