25-26-dihydroxycholecalciferol has been researched along with Epilepsy* in 2 studies
2 other study(ies) available for 25-26-dihydroxycholecalciferol and Epilepsy
Article | Year |
---|---|
Different metabolism of vitamin D2/D3 in epileptic patients treated with phenobarbitone/phenytoin.
Serum concentrations of vitamin D metabolites were measured before and during treatment with either vitamin D2 or vitamin D3, 4000 IU per day for 24 weeks, in 22 epileptic outpatients receiving phenobarbitone/phenytoin. The serum concentration of total 1,25(OH)2D did not change during the treatment period in any of the treatment groups. On the other hand, in the vitamin D2 group, serum 25(OH)D2, total 25(OH)D, and 24,25(OH)2D increased significantly during the trial, whereas serum concentrations of the vitamin D3 metabolites were unchanged. In the vitamin D3 group, serum concentrations of the vitamin D3 metabolites increased significantly, whereas the vitamin D3 metabolite levels remained unchanged. However, vitamin D3 treatment resulted in a 2-4-fold greater increase in serum concentrations compared to vitamin D2 treatment. Treatment with vitamin D2 and vitamin D3 in the same dose in IU results in considerably different serum concentrations of the vitamin D metabolites. Topics: 24,25-Dihydroxyvitamin D 3; 25-Hydroxyvitamin D 2; Adult; Aged; Calcifediol; Calcium; Cholecalciferol; Dihydroxycholecalciferols; Epilepsy; Ergocalciferols; Female; Humans; Male; Middle Aged; Phenobarbital; Phenytoin | 1986 |
Anticonvulsant drug therapy in human pregnancy: effects on serum concentrations of vitamin D metabolites in maternal and cord blood.
Serum concentrations of the main vitamin D metabolites and of calcium, phosphate, and alkaline phosphatase were determined in each of the three trimesters of pregnancy and in simultaneously obtained maternal and cord blood at delivery in 22 epileptic women treated with diphenylhydantoin or carbamazepine alone or with a combination with one other drug. The results were compared with similarly obtained data from 22 normal pregnancies. Women in both groups received supplements of 400 IU vitamin D3 per day. All the women had 25-hydroxyvitamin D levels within the normal range for healthy adults (greater than 12 ng/ml) throughout pregnancy. The epileptic women had, however, significantly (p less than 0.05) lower median 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D levels and higher median 25,26-dihydroxyvitamin D values than the reference group. The 24,25-dihydroxyvitamin D concentrations did not differ significantly, but the median ratio of 24,25-dihydroxyvitamin D to 25-hydroxyvitamin D was higher in the epileptic women at the end of pregnancy (p = 0.05). The respective differences in cord serum concentrations reflected those of the mothers at delivery. Serum calcium tended to be lower during epileptic pregnancy, but none were hypocalcemic. The alkaline phosphatase and phosphate values did not consistently differ from those of the reference women. The median alkaline phosphatase level of cord serum was slightly higher in the epileptic group, but the calcium and phosphate levels were similar to the reference values. The various biochemical parameters of the carbamazepine-treated women tended to be intermediate between those of the healthy and diphenylhydantoin-treated groups. Antiepileptic drug therapy appears to affect vitamin D metabolism and calcium homeostasis during pregnancy. The derangements may not be of major clinical significance, however, in vitamin D-supplemented and normally functioning women on long-term low-dose therapy. Topics: 24,25-Dihydroxyvitamin D 3; Adolescent; Adult; Alkaline Phosphatase; Anticonvulsants; Calcifediol; Calcitriol; Calcium; Carbamazepine; Cholecalciferol; Dihydroxycholecalciferols; Epilepsy; Female; Fetal Blood; Homeostasis; Humans; Phenytoin; Phosphates; Pregnancy; Pregnancy Complications; Vitamin D | 1984 |