23-hydroxybetulinic-acid has been researched along with Liver-Neoplasms* in 7 studies
7 other study(ies) available for 23-hydroxybetulinic-acid and Liver-Neoplasms
Article | Year |
---|---|
23-hydroxybetulinic acid reduces tumorigenesis, metastasis and immunosuppression in a mouse model of hepatocellular carcinoma via disruption of the MAPK signaling pathway.
Hepatocellular carcinoma (HCC) shows recurrence and lung metastasis even after treatment. 23-hydroxybetulinic acid (23-HBA), a major active constituent of Pulsatilla chinensis, exhibits potent antitumor activities. We herein investigate the biological effect of 23-HBA on metastasis and immunosuppression in a mouse model of HCC. Microarray-based gene expression profiling was employed to identify the target genes of 23-HBA in the treatment of HCC. The effect of 23-HBA on the progression of HCC was evaluated by in-vitro cell function measurements along with in-vivo xenograft implantation, lung metastasis and CD11b+Gr1+ staining experiments. The potential mechanism involving target signaling pathway was investigated by western blot analysis. Bioinformatics analysis revealed that matrix metalloproteinase 2 (MMP2) was a key target gene mediated by 23-HBA in HCC, whereas Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis demonstrated that MMP2 mainly affects the development and metastasis of HCC. 23-HBA significantly reduced cell malignant functions in vitro while delaying the HCC growth and metastasis in vivo. In addition, the number of myeloid-derived suppressor cells was shown to be reduced following administration of 23-HBA in mice. Mechanistic analysis indicated that these effects of 23-HBA during HCC were involved with the mitogen-activated protein kinase (MAPK) signaling pathway inactivation and resulted in decreased phosphorylation of both mitogen-activated protein kinases 1/2 and extracellular signal-regulated kinase 1/2. Our study reveals that 23-HBA acts as a tumor suppressor agent and suppresses HCC tumorigenesis, metastasis and immunosuppression via blockade of the MAPK signaling pathway, suggesting that 23-HBA may serve as a promising drug target to treat HCC. Topics: Animals; Carcinogenesis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Humans; Immunosuppression Therapy; Liver Neoplasms; Lung Neoplasms; Matrix Metalloproteinase 2; Mice; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Piperidines; Signal Transduction; Triterpenes | 2022 |
A piperazidine derivative of 23-hydroxy betulinic acid induces a mitochondria-derived ROS burst to trigger apoptotic cell death in hepatocellular carcinoma cells.
Elevated production of reactive oxygen species (ROS) and an altered redox state have frequently been observed in hepatocellular carcinoma (HCC); therefore, selective killing of HCC cells by chemotherapeutic agents that stimulate ROS generation or impair antioxidant systems may be a feasible approach in HCC chemotherapy. Recently, betulinic acid and its derivatives have attracted attention because they showed anti-cancer effects via a ROS- and mitochondria-related mechanism. However, the source of ROS overproduction and the role of mitochondria were poorly identified, and the weak in vivo antitumour activity of these compounds limits their development as drugs.. Cytotoxicity was detected using MTT assays. In vivo anti-HCC effects were assessed using nude mice bearing HepG2 tumour xenografts. Cell cycle analysis, apoptosis rate and mitochondrial membrane potential were measured by flow cytometry. ROS production was detected using a microplate reader or a fluorescence microscope. Changes in gene and protein levels were measured by RT-PCR and western blotting, respectively. Other assays were performed using related detection kits.. B5G9, a piperazidine derivative of 23-hydroxy betulinic acid (23-HBA), showed excellent in vivo anti-HCC effects, with a tumour growth inhibitory rate of greater than 80%, and no significant side effects. B5G9 stimulated the production of ROS, which were derived from the mitochondria, but it had no effect on various other antioxidant systems. Moreover, B5G9 induced mitochondrial dysfunction, which was characterized by morphological changes, membrane potential collapse, membrane permeabilization, and decreases in the O. We discovered a piperazidine derivative of 23-HBA, B5G9, with excellent anti-HCC effects both in vivo and in vitro and no obvious toxic effects. The underlying mechanism was associated with mitochondria-derived ROS overproduction, and mitochondria played essential roles in B5G9-induced cell death. This study identified a potential agent for anti-HCC therapy and elucidated the mitochondria-related mechanism of BA and its derivatives. Topics: Animals; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Cell Survival; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Liver Neoplasms; Membrane Potential, Mitochondrial; Mice; Mitochondria; Piperazines; Reactive Oxygen Species; Triterpenes; Xenograft Model Antitumor Assays | 2016 |
Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives.
A collection of pyrazole-fused 23-hydroxybetulinic acid derivatives were designed, synthesized and evaluated for their antitumor activity. Most of the newly synthesized compounds exhibited significant antiproliferative activity. Especially compound 15e displayed the most potent activity with the IC50 values of 5.58 and 6.13μM against B16 and SF763 cancer cell lines, respectively. Furthermore, the significant in vivo antitumor activity of 15e was validated in H22 liver cancer and B16 melanoma xenograft mouse models. The structure-activity relationships of these 23-hydroxybetulinic acid derivatives were also discussed based on the present investigation. Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Disease Models, Animal; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Melanoma, Experimental; Mice; Pyrazoles; Structure-Activity Relationship; Transplantation, Heterologous; Triterpenes | 2015 |
Design, synthesis and antitumor activity of triterpenoid pyrazine derivatives from 23-hydroxybetulinic acid.
Pyrazine-fused 23-hydroxybetulinic acid was synthesized by introducing a pyrazine ring between C-2 and C-3 position and further modifications were carried out by substitution of C-28 carboxyl group by ester and amide linkage to enhance the antitumor activity. The biological screening results showed that all of the derivatives exhibited more significant antiproliferative activity than the parent compound. In particular compound 12a exhibited the most potent activity with IC50 values of 3.53 μM, 4.42 μM and 5.13 μM against cell lines SF-763, B16 and Hela, respectively. In the preliminary mechanism study, 12a caused cell arrest in G1 phase and significantly induced apoptosis of B16 cells in a dose-dependent manner. Furthermore, the in vivo antitumor activity of 12a was validated (tumor inhibitory ratio of 55.6% and 62.7%, respectively) in mice with H22 liver cancer and B16 melanoma. Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; G1 Phase; HeLa Cells; Humans; Liver Neoplasms; Melanoma, Experimental; Mice; Molecular Structure; Morpholines; Pyrazines; Structure-Activity Relationship; Triterpenes | 2015 |
B4G2 induces mitochondrial apoptosis by the ROS-mediated opening of Ca(2+)-dependent permeability transition pores.
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. At present, only sorafenib is approved to treat HCC. In this study, we found that a 23-hydroxybetulinic acid derivative, B4G2, exhibited potent antiproliferative activity in HCC cell lines.. We used four HCC cell lines (HepG2, HepG2/ADM, Hep3B and Bel-7402) to evaluate the anti-tumour activity and explore underlying mechanisms by which B4G2 induces apoptosis.. Among these cell lines, HepG2 showed the highest sensitivity to B4G2. HepG2 cells treated with B4G2 showed a depolarized mitochondrial membrane potential, released cytochrome c, activated caspase-9 and caspase-3 and cleaved poly ADP-ribose polymerase (PARP). However, Z-VAD-FMK, a pan-caspase inhibitor, did not attenuate B4G2-induced apoptosis, implying that the induction of mitochondrial apoptosis by B4G2 may be independent of caspases. Moreover, pre-treatment with MgCl2, a blocker of Ca2+-dependent permeability transition (PT) pores, attenuated the depolarization of the mitochondrial potential and decreased the population of apoptotic cells, indicating that B4G2-induced apoptosis was partly dependent on the opening of the Ca2+-dependent PT pores. B4G2 also increased the levels of intracellular calcium and reactive oxygen species (ROS). Furthermore, an ROS scavenger, N-acetyl-cysteine (NAC), markedly decreased the accumulation of intracellular calcium and apoptosis.. This is the first demonstration that B4G2 inhibits the growth of HCC cells and induces mitochondrial apoptosis in hepatocellular carcinoma cells by the ROS-mediated opening of Ca2+-dependent permeability transition pores. Topics: Apoptosis; Calcium; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Hep G2 Cells; Humans; Liver Neoplasms; Membrane Potential, Mitochondrial; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Reactive Oxygen Species; Triterpenes | 2015 |
Synthesis and antitumor activity of novel 3-oxo-23-hydroxybetulinic acid derivatives.
A series of novel derivatives of 3-oxo-23-hydroxybetulinic acid was designed, synthesized, and evaluated for their antiproliferative activity against a panel of cancer cell lines (HL-60, BEL-7402, SF-763, HeLa, B16 and A375). The results indicated that majority of the derivatives exhibited more significant antitumor activity than the parent compound. In particular compound 10e showed the most potent activity with IC50 values of 5.85, 6.23 and 7.22 μM against B16, SF-763 and BEL-7402 cells, respectively. Furthermore, 10e inhibited tumor growth by 51.8% and 62.7% (w/w) in H22 and B16 xenograft mouse models, comparable to cyclophosphamide and 5-fluorouracil, respectively. Topics: Animals; Antineoplastic Agents; Carcinoma, Hepatocellular; Cell Proliferation; Humans; Liver Neoplasms; Melanoma, Experimental; Mice; Molecular Structure; Neoplasms; Structure-Activity Relationship; Triterpenes; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2014 |
BBA, a derivative of 23-hydroxybetulinic acid, potently reverses ABCB1-mediated drug resistance in vitro and in vivo.
23-O-(1,4'-Bipiperidine-1-carbonyl)betulinic acid (BBA), a synthetic derivative of 23-hydroxybetulinic acid (23-HBA), shows a reversal effect on multidrug resistance (MDR) in our preliminary screening. Overexpression of ATP-binding cassette (ABC) transporters such as ABCB1, ABCG2, and ABCC1 has been reported in recent studies to be a major factor contributing to MDR. Our study results showed that BBA enhanced the cytotoxicity of ABCB1 substrates and increased the accumulation of doxorubicin or rhodamine123 in ABCB1 overexpressing cells, but had no effect on non ABCB1 substrate, such as cisplatin; what's more, BBA slightly reversed ABCG2-mediated resistance to SN-38, but did not affect the ABCC1-mediated MDR. Further studies on the mechanism indicated that BBA did not alter the expression of ABCB1 at mRNA or protein levels, but affected the ABCB1 ATPase activity by stimulating the basal activity at lower concentrations and inhibiting the activity at higher concentrations. In addition, BBA inhibited the verapamil-stimulated ABCB1 ATPase activity and the photolabeling of ABCB1 with [(125)I] iodoarylazidoprazosin in a concentration-dependent manner, indicating that BBA directly interacts with ABCB1. The docking study confirmed this notion that BBA could bind to the drug binding site(s) on ABCB1, but its binding position was only partially overlapping with that of verapamil or iodoarylazidoprazosin. Importantly, BBA increased the inhibitory effect of paclitaxel in ABCB1 overexpressing KB-C2 cell xenografts in nude mice. Taken together, our findings suggest that BBA can reverse ABCB1-mediated MDR by inhibiting its efflux function of ABCB1, which supports the development of BBA as a novel potential MDR reversal agent used in the clinic. Topics: Animals; Antibiotics, Antineoplastic; Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Apoptosis; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; Blotting, Western; Breast Neoplasms; Calcium Channel Blockers; Camptothecin; Carcinoma, Hepatocellular; Cell Proliferation; Cells, Cultured; Cisplatin; Doxorubicin; Drug Resistance, Multiple; Drug Resistance, Neoplasm; Female; Fluorescent Antibody Technique; Humans; In Vitro Techniques; Irinotecan; KB Cells; Liver Neoplasms; Male; Mice; Mice, Nude; Models, Molecular; Molecular Docking Simulation; Paclitaxel; Piperidines; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Triterpenes; Verapamil | 2012 |