23-hydroxybetulinic-acid and Disease-Models--Animal

23-hydroxybetulinic-acid has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for 23-hydroxybetulinic-acid and Disease-Models--Animal

ArticleYear
23-hydroxybetulinic acid reduces tumorigenesis, metastasis and immunosuppression in a mouse model of hepatocellular carcinoma via disruption of the MAPK signaling pathway.
    Anti-cancer drugs, 2022, 10-01, Volume: 33, Issue:9

    Hepatocellular carcinoma (HCC) shows recurrence and lung metastasis even after treatment. 23-hydroxybetulinic acid (23-HBA), a major active constituent of Pulsatilla chinensis, exhibits potent antitumor activities. We herein investigate the biological effect of 23-HBA on metastasis and immunosuppression in a mouse model of HCC. Microarray-based gene expression profiling was employed to identify the target genes of 23-HBA in the treatment of HCC. The effect of 23-HBA on the progression of HCC was evaluated by in-vitro cell function measurements along with in-vivo xenograft implantation, lung metastasis and CD11b+Gr1+ staining experiments. The potential mechanism involving target signaling pathway was investigated by western blot analysis. Bioinformatics analysis revealed that matrix metalloproteinase 2 (MMP2) was a key target gene mediated by 23-HBA in HCC, whereas Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis demonstrated that MMP2 mainly affects the development and metastasis of HCC. 23-HBA significantly reduced cell malignant functions in vitro while delaying the HCC growth and metastasis in vivo. In addition, the number of myeloid-derived suppressor cells was shown to be reduced following administration of 23-HBA in mice. Mechanistic analysis indicated that these effects of 23-HBA during HCC were involved with the mitogen-activated protein kinase (MAPK) signaling pathway inactivation and resulted in decreased phosphorylation of both mitogen-activated protein kinases 1/2 and extracellular signal-regulated kinase 1/2. Our study reveals that 23-HBA acts as a tumor suppressor agent and suppresses HCC tumorigenesis, metastasis and immunosuppression via blockade of the MAPK signaling pathway, suggesting that 23-HBA may serve as a promising drug target to treat HCC.

    Topics: Animals; Carcinogenesis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Disease Models, Animal; Gene Expression Regulation, Neoplastic; Humans; Immunosuppression Therapy; Liver Neoplasms; Lung Neoplasms; Matrix Metalloproteinase 2; Mice; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Piperidines; Signal Transduction; Triterpenes

2022
Synthesis, in vitro and in vivo antitumor activity of pyrazole-fused 23-hydroxybetulinic acid derivatives.
    Bioorganic & medicinal chemistry letters, 2015, Feb-01, Volume: 25, Issue:3

    A collection of pyrazole-fused 23-hydroxybetulinic acid derivatives were designed, synthesized and evaluated for their antitumor activity. Most of the newly synthesized compounds exhibited significant antiproliferative activity. Especially compound 15e displayed the most potent activity with the IC50 values of 5.58 and 6.13μM against B16 and SF763 cancer cell lines, respectively. Furthermore, the significant in vivo antitumor activity of 15e was validated in H22 liver cancer and B16 melanoma xenograft mouse models. The structure-activity relationships of these 23-hydroxybetulinic acid derivatives were also discussed based on the present investigation.

    Topics: Animals; Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Cell Survival; Disease Models, Animal; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Melanoma, Experimental; Mice; Pyrazoles; Structure-Activity Relationship; Transplantation, Heterologous; Triterpenes

2015