2-phenyl-4-4-5-5-tetramethylimidazoline-1-oxyl-3-oxide has been researched along with Inflammation* in 2 studies
2 other study(ies) available for 2-phenyl-4-4-5-5-tetramethylimidazoline-1-oxyl-3-oxide and Inflammation
Article | Year |
---|---|
Regulation of ROS-NF-κB axis by tuna backbone derived peptide ameliorates inflammation in necrotizing enterocolitis.
Necrotizing enterocolitis (NEC) is the most common life-threatening gastrointestinal disease encountered in the premature infant. It has been shown that the intercellular reactive oxygen species (ROS) generation activated by lipopolysaccharide involved in the nuclear factor kappa B (NF-κB) activation and pathogenesis of NEC. Here, we report that an antioxidant peptide from tuna backbone protein (APTBP) reduces the inflammatory cytokines transcription and release. APTBP directly scavenges the free radical through 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) assay. In addition, APTBP reduces the intracellular ROS level, exhibiting an antioxidant activity within cells. Remarkably, gavage with APTBP attenuates the phenotype of NEC in the mice model. Mechanically, the NF-κB activation, together with the expression of inflammatory cytokines are decreased significantly when intracellular ROS are eliminated by APTBP. Therefore, our findings demonstrated that an antioxidant peptide, APTBP, ameliorates inflammation in NEC through attenuating ROS-NF-κB axis. Topics: Animals; Animals, Newborn; Biphenyl Compounds; Cyclic N-Oxides; Cytokines; Disease Models, Animal; Enterocolitis, Necrotizing; Humans; Imidazoles; Inflammation; Intestinal Mucosa; Lipopolysaccharides; Mice; NF-kappa B; Peptides; Picrates; Rats; Reactive Oxygen Species; Tuna | 2019 |
Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea.
Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders. Topics: Anemia, Sickle Cell; Animals; Cell Movement; Cyclic N-Oxides; Disease Models, Animal; Free Radical Scavengers; Hemoglobins; Hemolysis; Humans; Hydrazines; Hydroxyurea; Imidazoles; Inflammation; Leukocytes; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Nitric Oxide; Nitric Oxide Donors; Primary Cell Culture; Tumor Necrosis Factor-alpha; Viscosity; Water | 2015 |