2-oleoylglycerol and Pain

2-oleoylglycerol has been researched along with Pain* in 2 studies

Other Studies

2 other study(ies) available for 2-oleoylglycerol and Pain

ArticleYear
Mechanisms of exercise-induced hypoalgesia.
    The journal of pain, 2014, Volume: 15, Issue:12

    The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise.. Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.

    Topics: Adolescent; Adult; Amides; Arachidonic Acids; Cross-Over Studies; Double-Blind Method; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Glycine; Hot Temperature; Humans; Isometric Contraction; Male; Oleic Acids; Pain; Pain Perception; Pain Threshold; Palmitic Acids; Pressure; Young Adult

2014
Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat.
    British journal of pharmacology, 2012, Volume: 167, Issue:8

    The cannabinoid receptor-mediated analgesic effects of 2-arachidonoylglycerol (2-AG) are limited by monoacylglycerol lipase (MAGL). 4-nitrophenyl 4-[bis (1,3-benzodioxol-5-yl) (hydroxy) methyl] piperidine-1-carboxylate (JZL184) is a potent inhibitor of MAGL in the mouse, though potency is reportedly reduced in the rat. Here we have assessed the effects of spinal inhibition of MAGL with JZL184 on nociceptive processing in rats.. In vivo spinal electrophysiological assays in anaesthetized rats were used to determine the effects of spinal administration of JZL184 on spinal nociceptive processing in the presence and absence of hindpaw inflammation. Contributions of CB(1) receptors to these effects was assessed with AM251. Inhibition of 2-oleoylglycerol hydrolytic activity and alterations of 2-AG in the spinal cord after JZL 184 were also assessed.. Spinal JZL184 dose-dependently inhibited mechanically evoked responses of wide dynamic range (WDR) neurones in naïve anaesthetized rats, in part via the CB(1) receptor. A single spinal administration of JZL184 abolished inflammation-induced expansion of the receptive fields of spinal WDR neurones. However, neither spinal nor systemic JZL184 altered levels of 2-AG, or 2-oleoylglycerol hydrolytic activity in the spinal cord, although JZL184 displayed robust inhibition of MAGL when incubated with spinal cord tissue in vitro.. JZL184 exerted robust anti-nociceptive effects at the level of the spinal cord in vivo and inhibited rat spinal cord MAGL activity in vitro. The discordance between in vivo and in vitro assays suggests that localized sites of action of JZL184 produce these profound functional inhibitory effects.. This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.

    Topics: Amidohydrolases; Analgesics; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Benzodioxoles; Carrageenan; Central Nervous System Sensitization; Drug Administration Routes; Endocannabinoids; Ethanolamines; Glycerides; Inflammation; Lipoprotein Lipase; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Pain; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Species Specificity; Spinal Cord

2012