2-deoxyribose-1-phosphate--(alpha-d-erythro)-isomer and Colonic-Neoplasms

2-deoxyribose-1-phosphate--(alpha-d-erythro)-isomer has been researched along with Colonic-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for 2-deoxyribose-1-phosphate--(alpha-d-erythro)-isomer and Colonic-Neoplasms

ArticleYear
Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration.
    Cancer research, 2003, Jan-15, Volume: 63, Issue:2

    The angiogenic factor thymidine phosphorylase (TP) is highly expressed in many human solid tumors, and the level of its expression is associated with tumor neovascularization, invasiveness, and metastasis and with shorter patient survival time. TP promotes endothelial cell (EC) migration in vitro and angiogenesis in vivo, and these have been linked to its enzymatic activity. The mechanism by which TP stimulates EC migration was investigated using human umbilical vein ECs (HUVECs). TP induced concentration-dependent HUVEC migration, which required a TP gradient and thymidine and which was abrogated by the TP inhibitor CIMU (5-chloro-6(1-imidazolylmethyl)uracil). The chemotactic actions of TP plus thymidine were duplicated by the TP metabolite, 2-deoxyribose-1-phosphate (dR-1-P), and 10-fold more potently by its subsequent metabolite, 2-deoxyribose (2dR). Migration induced by dR-1-P, but not 2dR, was blocked by an alkaline phosphatase inhibitor, suggesting that the actions of dR-1-P first required its conversion to 2dR. In the migration assay, [5'-3H]dThd was metabolized to dR-1-P (96%) and 2dR (3.8%), and a gradient of both metabolites was maintained between the lower and upper chambers over the entire 5-h assay. TP expression in human solid tumors occurs in both tumor epithelial cells and in tumor-associated macrophages. The migration assay was adapted to use TP-transfected carcinoma cells to stimulate HUVEC migration, and they were found to induce more migration than did control vector-transfected cells. Human monocyte cells U937 and THP1, which constitutively expressed high levels of TP, also strongly induced HUVEC migration in the coculture assay. CIMU inhibited tumor-cell and monocyte-induced migration. In contrast, a neutralizing antibody to TP had no effect on cell-stimulated HUVEC migration, even though it completely blocked the migration mediated by purified TP. Thus, the intracellular actions of TP were sufficient to stimulate HUVEC chemotaxis. In contrast to purified TP, when incubated with [5'-3H]-thymidine, cells expressing TP released up to 20-fold more 2dR into the medium than dR-1-P. These studies demonstrate that TP-expressing cells mediate EC migration via the intracellular metabolism of thymidine and subsequent extracellular release of 2dR, which forms a chemotactic gradient.

    Topics: 5'-Nucleotidase; Alkaline Phosphatase; Breast Neoplasms; Cell Communication; Cell Movement; Chemotaxis; Colonic Neoplasms; Deoxyribose; Endothelium, Vascular; Enzyme Inhibitors; HT29 Cells; Humans; Monocytes; Ribosemonophosphates; Tumor Cells, Cultured

2003
Rapid disappearance of deoxyribose-1-phosphate in platelet derived endothelial cell growth factor/thymidine phosphorylase overexpressing cells.
    Biochemical and biophysical research communications, 2003, Feb-14, Volume: 301, Issue:3

    Platelet derived endothelial cell growth factor/thymidine phosphorylase (PD-ECGF/TP) catalyzes the phosphorolysis of thymidine (TdR) to thymine and deoxyribose-1-phosphate (dR-1-P) and has a pro-angiogenic effect for which dR-1-P may be responsible. Using a purine nucleoside phosphorylase based assay it was found that TdR incubation did not increase dR-1-P accumulation in colon cancer cell line Colo320 and its PD-ECGF/TP transfected variant Colo320TP1. The assay was linear up to 25,000pmol dR-1-P with complete recovery of dR-1-P from cellular extracts. There was a huge discrepancy between thymine production and the measured dR-1-P level, 0.05% of the expected value for dR-1-P was found, indicating that there was a rapid disappearance of dR-1-P. However, in cellular extracts, TdR incubation increased dR-1-P, measurable by trapping, which was inhibited by a thymidine phosphorylase inhibitor. dR-1-P directly added to cellular extracts disappeared within 5-10min. In conclusion, large amounts of dR-1-P are produced by Colo320TP1 cells, which rapidly disappear thus not resulting in a net accumulation of dR-1-P in these cells.

    Topics: Cell Line; Colonic Neoplasms; Humans; Kinetics; Purine-Nucleoside Phosphorylase; Ribosemonophosphates; Thymidine; Thymidine Phosphorylase; Transfection; Tumor Cells, Cultured

2003
A comparison of 5-fluorouracil metabolism in human colorectal cancer and colon mucosa.
    Cancer, 1991, Nov-01, Volume: 68, Issue:9

    The metabolism of 5-fluorouracil (5-FU) was studied in biopsy specimens of primary colorectal cancer and healthy colonic mucosa obtained from previously untreated patients immediately after surgical removal. The conversion of 5-FU to anabolites was measured under saturating substrate (5-FU) and cosubstrate concentrations. For all enzymes, the activity was about threefold higher in tumor tissue compared with healthy mucosa of the same patient. The activity of pyrimidine nucleoside phosphorylase with deoxyribose-1-phosphate (dRib-1-P) was about tenfold higher (about 130 and 1200 nmol/hr/mg protein in tumors) than with ribose-1-phosphate (Rib-1-P), both in tumor and mucosa. Synthesis of the active nucleotides (5-fluoro-uridine-5'-monophosphate [FUMP] and 5-fluoro-2'-deoxyuridine-5'-monophosphate [FdUMP]) was studied by adding physiologic concentrations of adenosine triphosphate (ATP) to the reaction mixture; the rate of FdUMP synthesis was 50% of that of FUMP (about 4 and 7 nmol/hr/mg protein in tumors). Direct synthesis of FUMP from 5-FU in the presence of 5-phosphoribosyl-1-pyrophosphate (PRPP) was about 2 nmol/hr/mg protein. With the natural substrate for this reaction, orotic acid, the activity was about 14-fold higher. To obtain insight into the recruitment of precursors for these cosubstrates, the authors also tested the enzyme activity of pyrimidine nucleoside phosphorylase with inosine and ribose-5-phosphate (Rib-5-P, as precursors for Rib-1-P) and deoxyinosine (as a precursor for dRib-1-P); enzyme activities were approximately 7%, 7%, and 3%, respectively, of that with the normal substrates, both in tumors and mucosa. However, when ATP and Rib-5-P were combined, the synthesis of FUMP was about 70% of that with PRPP, but only in tumors. In normal tissues no activity was detectable. These data suggest a preference of colon tumor over colon mucosa for the conversion of 5-FU to active nucleotides by a direct pathway; a selective antitumor effect of 5-FU may be related to this difference.

    Topics: Adenosine Triphosphate; Aged; Aged, 80 and over; Colon; Colonic Neoplasms; Fluorodeoxyuridylate; Fluorouracil; Humans; Intestinal Mucosa; Middle Aged; Orotate Phosphoribosyltransferase; Pentosyltransferases; Phosphoribosyl Pyrophosphate; Pyrimidine Phosphorylases; Rectal Neoplasms; Ribosemonophosphates; Uracil Nucleotides; Uridine Triphosphate

1991