2-cyano-3-12-dioxooleana-1-9(11)-dien-28-oic-acid-ethyl-amide has been researched along with Inflammation* in 4 studies
4 other study(ies) available for 2-cyano-3-12-dioxooleana-1-9(11)-dien-28-oic-acid-ethyl-amide and Inflammation
Article | Year |
---|---|
Triterpenoid CDDO-EA inhibits lipopolysaccharide-induced inflammatory responses in skeletal muscle cells through suppression of NF-κB.
Chronic inflammation is a major contributor to the development of obesity-induced insulin resistance, which then can lead to the development of type 2 diabetes (T2D). Skeletal muscle plays a pivotal role in insulin-stimulated whole-body glucose disposal. Therefore, dysregulation of glucose metabolism by inflammation in skeletal muscle can adversely affect skeletal muscle insulin sensitivity and contribute to the pathogenesis of T2D. The mechanism underlying insulin resistance is not well known; however, macrophages are important initiators in the development of the chronic inflammatory state leading to insulin resistance. Skeletal muscle consists of resident macrophages which can be activated by lipopolysaccharide (LPS). These activated macrophages affect myocytes via a paracrine action of pro-inflammatory mediators resulting in secretion of myokines that contribute to inflammation and ultimately skeletal muscle insulin resistance. Therefore, knowing that synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acids (CDDOs) can attenuate macrophage pro-inflammatory responses in chronic disorders, such as cancer and obesity, and that macrophage pro-inflammatory responses can modulate skeletal muscle inflammation, we first examined whether CDDO-ethyl amide (CDDO-EA) inhibited chemokine and cytokine production in macrophages since this had not been reported for CDDO-EA. CDDO-EA blocked LPS-induced tumor necrosis factor-alpha (TNF-α), monocyte chemotactic protein-1 (MCP-1), interleukine-1beta (IL-1β), and interleukine-6 (IL-6) production in RAW 264.7 mouse and THP-1 human macrophages. Although many studies show that CDDOs have anti-inflammatory properties in several tissues and cells, little is known about the anti-inflammatory effects of CDDOs on skeletal muscle. We hypothesized that CDDO-EA protects skeletal muscle from LPS-induced inflammation by blocking nuclear factor kappa B (NF-κB) signaling. Our studies demonstrate that CDDO-EA prevented LPS-induced TNF-α and MCP-1 gene expression by inhibiting the NF-κB signaling pathway in L6-GLUT4myc rat myotubes. Our findings suggest that CDDO-EA suppresses LPS-induced inflammation in macrophages and myocytes and that CDDO-EA is a promising compound as a therapeutic agent for protecting skeletal muscle from inflammation. Topics: Animals; Anti-Inflammatory Agents; Diabetes Mellitus, Type 2; Humans; Inflammation; Insulin Resistance; Lipopolysaccharides; Mice; Muscle Fibers, Skeletal; Muscle, Skeletal; NF-kappa B; Obesity; Rats; Triterpenes; Tumor Necrosis Factor-alpha | 2023 |
Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria.
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with high mortality and neurocognitive impairment in survivors. New anti-malarials and host-based adjunctive therapy may improve clinical outcome in CM. Synthetic oleanane triterpenoid (SO) compounds have shown efficacy in the treatment of diseases where inflammation and oxidative stress contribute to pathogenesis.. A derivative of the SO 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), CDDO-ethyl amide (CDDO-EA) was investigated for the treatment of severe malaria in a pre-clinical model. CDDO-EA was evaluated in vivo as a monotherapy as well as adjunctive therapy with parenteral artesunate in the Plasmodium berghei strain ANKA experimental cerebral malaria (ECM) model.. CDDO-EA alone improved outcome in ECM and, given as adjunctive therapy in combination with artesunate, it significantly improved outcome over artesunate alone (p = 0.009). Improved survival was associated with reduced inflammation, enhanced endothelial stability and blood-brain barrier integrity. Survival was improved even when administered late in the disease course after the onset of neurological symptoms.. These results indicate that SO are a new class of immunomodulatory drugs and support further studies investigating this class of agents as potential adjunctive therapy for severe malaria. Topics: Animals; Antimalarials; Blood-Brain Barrier; Endothelium; Female; Inflammation; Longevity; Malaria, Cerebral; Male; Mice, Inbred C57BL; Oleanolic Acid; Rats | 2017 |
Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.
Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA. Topics: Adenomatous Polyposis Coli; Aging; Animals; Colorectal Neoplasms; Disease Models, Animal; Disease Progression; DNA Damage; Gene Expression Regulation, Neoplastic; Humans; Inflammation; Mice, Inbred C57BL; Mice, Knockout; Mutation; Oleanolic Acid; Oxidative Stress; Proton Therapy; Reverse Transcriptase Polymerase Chain Reaction; Survival Analysis; Tumor Suppressor Protein p53; Whole-Body Irradiation | 2016 |
Neuroprotective effect of Nrf2/ARE activators, CDDO ethylamide and CDDO trifluoroethylamide, in a mouse model of amyotrophic lateral sclerosis.
Oxidative damage, neuroinflammation, and mitochondrial dysfunction contribute to the pathogenesis of amyotrophic lateral sclerosis (ALS), and these pathologic processes are tightly regulated by the Nrf2/ARE (NF-E2-related factor 2/antioxidant response element) signaling program. Therefore, modulation of the Nrf2/ARE pathway is an attractive therapeutic target for neurodegenerative diseases such as ALS. We examined two triterpenoids, CDDO (2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid) ethylamide and CDDO trifluoroethylamide (CDDO-TFEA), that potently activate Nrf2/ARE in a cell culture model of ALS and in the G93A SOD1 mouse model of ALS. Treatment of NSC-34 cells stably expressing mutant G93A SOD1 with CDDO-TFEA upregulated Nrf2 expression and resulted in translocation of Nrf2 into the nucleus. Western blot analysis showed an increase in the expression of Nrf2/ARE-regulated proteins. When treatment started at a "presymptomatic age" of 30days, both of these compounds significantly attenuated weight loss, enhanced motor performance, and extended the survival of G93A SOD1 mice. Treatment started at a "symptomatic age," as assessed by impaired motor performance, was neuroprotective and slowed disease progression. These findings provide further evidence that compounds that activate the Nrf2/ARE signaling pathway may be useful in the treatment of ALS. Topics: Amyotrophic Lateral Sclerosis; Animals; Cell Line; Cell Nucleus; Disease Models, Animal; Inflammation; Major Histocompatibility Complex; Mice; Mice, Transgenic; Mitochondria; Neurodegenerative Diseases; NF-E2-Related Factor 2; Oleanolic Acid; Oxidative Stress; Proteins; RNA, Messenger; Signal Transduction; Superoxide Dismutase; Vesicular Transport Proteins | 2011 |