2-chloro-n(6)-(3-iodobenzyl)adenosine-5--n-methyluronamide and Disease-Models--Animal

2-chloro-n(6)-(3-iodobenzyl)adenosine-5--n-methyluronamide has been researched along with Disease-Models--Animal* in 11 studies

Trials

1 trial(s) available for 2-chloro-n(6)-(3-iodobenzyl)adenosine-5--n-methyluronamide and Disease-Models--Animal

ArticleYear
Impairment of adenosine A3 receptor activity disrupts neutrophil migratory capacity and impacts innate immune function in vivo.
    European journal of immunology, 2012, Volume: 42, Issue:12

    Adenosine possesses potent anti-inflammatory properties which are partly mediated by G(i) -coupled adenosine A3 receptors (A3Rs). A3R agonists have shown clinical benefit in a number of inflammatory conditions although some studies in A3R-deficient mice suggest a pro-inflammatory role. We hypothesised that, in addition to cell signalling effects, A3R compounds might inhibit neutrophil chemotaxis by disrupting the purinergic feedback loop controlling leukocyte migration. Human neutrophil activation triggered rapid upregulation of surface A3R expression which was disrupted by pre-treatment with either agonist (Cl-IB-MECA) or antagonist (MRS1220). Both compounds reduced migration velocity and neutrophil transmigration capacity without impacting the response to chemokines per se. Similar effects were observed in murine neutrophils, while cells from A3R-deficient mice displayed a constitutively impaired migratory phenotype indicating compound-induced desensitisation and genetic ablation had the same functional outcome. In a dextran sodium sulphate-induced colitis model, A3R-deficient mice exhibited reduced colon pathology and decreased tissue myeloperoxidase levels at day 8 - consistent with reduced neutrophil recruitment. However, A3R-deficient mice were unable to resolve the dextran sodium sulphate-induced inflammation and had elevated numbers of tissue-associated bacteria by day 21. Our data indicate that A3Rs play a role in neutrophil migration and disrupting this function has the potential to adversely affect innate immune responses.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Adenosine A3 Receptor Antagonists; Animals; Chemotaxis; Colitis; Dextran Sulfate; Disease Models, Animal; Humans; Immunity, Innate; Inflammation; Mice; Mice, Knockout; Neutrophils; Quinazolines; Receptor, Adenosine A3; Triazoles; Up-Regulation

2012

Other Studies

10 other study(ies) available for 2-chloro-n(6)-(3-iodobenzyl)adenosine-5--n-methyluronamide and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Double inhibition of cAMP and mTOR signalling may potentiate the reduction of cell growth in ADPKD cells.
    Clinical and experimental nephrology, 2017, Volume: 21, Issue:2

    ADPKD is a renal pathology caused by mutations of PKD1 and PKD2 genes, which encode for polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC1 plays an important role regulating several signal transducers, including cAMP and mTOR, which are involved in abnormal cell proliferation of ADPKD cells leading to the development and expansion of kidney cysts that are a typical hallmark of this disease. Therefore, the inhibition of both pathways could potentiate the reduction of cell proliferation enhancing benefits for ADPKD patients.. The inhibition of cAMP- and mTOR-related signalling was performed by Cl-IB-MECA, an agonist of A3 receptors, and rapamycin, respectively. Protein kinase activity was evaluated by immunoblot and cell growth was analyzed by direct cell counting.. The activation of A. The double treatment with rapamycin and Cl-IB-MECA may have synergistic effects on the inhibition of cell proliferation in ADPKD cells suggesting that combined therapies could improve renal function in ADPKD patients.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Animals; Cell Line; Cell Proliferation; CREB-Binding Protein; Cyclic AMP; Disease Models, Animal; Drug Synergism; Drug Therapy, Combination; Extracellular Signal-Regulated MAP Kinases; Genetic Predisposition to Disease; Humans; Kidney; Mice, Inbred C57BL; Mice, Knockout; Phenotype; Phosphorylation; Polycystic Kidney, Autosomal Dominant; Protein Kinase Inhibitors; Signal Transduction; Sirolimus; Time Factors; TOR Serine-Threonine Kinases; TRPP Cation Channels

2017
An adenosine A3 receptor agonist inhibits DSS-induced colitis in mice through modulation of the NF-κB signaling pathway.
    Scientific reports, 2015, Mar-12, Volume: 5

    The role of the adenosine A3 receptor (A3AR) in experimental colitis is controversial. The A3AR agonist N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) has been shown to have a clinical benefit, although studies in A3AR-deficient mice suggest a pro-inflammatory role. However, there are no studies on the effect of 2-Cl-IB-MECA and the molecular mechanism of action of A3AR in murine colitis models in vivo. Is it the same as that observed in vitro? The interaction between 2-CL-IB-MECA and A3AR in a murine colitis model and the signaling pathways associated with this interaction remain unclear. Here we demonstrate a role for the NF-κB signaling pathway and its effect on modifying the activity of proinflammatory factors in A3AR-mediated biological processes. Our results demonstrated that A3AR activation possessed marked effects on experimental colitis through the NF-κB signaling pathway.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Animals; Colitis; Cytokines; Disease Models, Animal; Gene Expression; Inflammation Mediators; Intestinal Mucosa; Mice; NF-kappa B; Peroxidase; Receptor, Adenosine A3; Signal Transduction

2015
Adenosine A3 receptor activation is neuroprotective against retinal neurodegeneration.
    Experimental eye research, 2015, Volume: 140

    Death of retinal neural cells, namely retinal ganglion cells (RGCs), is a characteristic of several retinal neurodegenerative diseases. Although the role of adenosine A3 receptor (A3R) in neuroprotection is controversial, A3R activation has been reported to afford protection against several brain insults, with few studies in the retina. In vitro models (retinal neural and organotypic cultures) and animal models [ischemia-reperfusion (I-R) and partial optic nerve transection (pONT)] were used to study the neuroprotective properties of A3R activation against retinal neurodegeneration. The A3R selective agonist (2-Cl-IB-MECA, 1 μM) prevented apoptosis (TUNEL(+)-cells) induced by kainate and cyclothiazide (KA + CTZ) in retinal neural cultures (86.5 ± 7.4 and 37.2 ± 6.1 TUNEL(+)-cells/field, in KA + CTZ and KA + CTZ + 2-Cl-IB-MECA, respectively). In retinal organotypic cultures, 2-Cl-IB-MECA attenuated NMDA-induced cell death, assessed by TUNEL (17.3 ± 2.3 and 8.3 ± 1.2 TUNEL(+)-cells/mm(2) in NMDA and NMDA+2-Cl-IB-MECA, respectively) and PI incorporation (ratio DIV4/DIV2 3.3 ± 0.3 and 1.3 ± 0.1 in NMDA and NMDA+2-Cl-IB-MECA, respectively) assays. Intravitreal 2-Cl-IB-MECA administration afforded protection against I-R injury decreasing the number of TUNEL(+) cells by 72%, and increased RGC survival by 57%. Also, intravitreal administration of 2-Cl-IB-MECA inhibited apoptosis (from 449.4 ± 37.8 to 207.6 ± 48.9 annexin-V(+)-cells) and RGC loss (from 1.2 ± 0.6 to 8.1 ± 1.7 cells/mm) induced by pONT. This study demonstrates that 2-Cl-IB-MECA is neuroprotective to the retina, both in vitro and in vivo. Activation of A3R may have great potential in the management of retinal neurodegenerative diseases characterized by RGC death, as glaucoma and diabetic retinopathy, and ischemic diseases.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Adenosine A3 Receptor Antagonists; Animals; Animals, Newborn; Apoptosis; Cell Survival; Disease Models, Animal; Excitatory Amino Acid Agonists; Fluorescent Antibody Technique, Indirect; In Situ Nick-End Labeling; Intravitreal Injections; Male; N-Methylaspartate; Neuroprotection; Optic Nerve Injuries; Organ Culture Techniques; Rats; Rats, Wistar; Receptor, Adenosine A3; Retina; Retinal Degeneration; Retinal Neurons

2015
Caspase inhibition via A3 adenosine receptors: a new cardioprotective mechanism against myocardial infarction.
    Cardiovascular drugs and therapy, 2014, Volume: 28, Issue:1

    2-CL-IB-MECA, (A3 adenosine receptor agonist)(A3AR) mediated cardioprotection is well documented although the associated intracellular signalling pathways remain unclear. Here we demonstrate a role of the pro-survival signalling pathways MEK1/2-ERK1/2 and PI3K/AKT and their effect on modifying Caspase-3 activity in A3AR mediated cardioprotection.. Isolated perfused rat hearts or primary adult rat cardiac myocytes were subjected to ischaemia/hypoxia and reperfusion/reoxygenation, respectively. 2-CL-IB-MECA (1 nM) was administered at the onset of reperfusion/reoxygenation in the presence and absence of either the PI3K inhibitor Wortmannin (5 nM) or MEK1/2 inhibitor UO126 (10 μM). Heart tissues were harvested for assessment of p-ERK1/2(Thr202/Tyr204) or p-AKT (Ser-473) status or underwent infarct size assessment. Cardiac myocytes underwent flow-cytometric analysis for apoptosis, necrosis, cleaved-caspase 3/p-BAD (Ser-112 and Ser-136) activity post-reoxygenation.. 2-CL-IB-MECA significantly reduced infarct size compared to non-treated controls, where co-administration with either of the kinase inhibitors abolished the infarct sparing effects. Administration of 2-CL-IB-MECA at reperfusion significantly upregulated the status of p-ERK1/2 and p-AKT compared to time matched controls in a UO126 and Wortmannin sensitive manner respectively. 2-CL-IB-MECA when administered throughout reoxygenation significantly reduced apoptosis, necrosis, cleaved-caspase 3 activity and increased p-BAD (Ser-112) and p-BAD (Ser-136) activity in myocytes subjected to hypoxia/reoxygenation injury. The cytoprotective effect was abolished by co-administration with the kinase inhibitors Wortmannin and/or UO126.. We have described the molecular mechanisms associated with A3AR mediated cardioprotection indicating a role for the pro-survival signalling pathways that decrease caspase-3 activity. These observations provide novel insight into the pharmacological effects of A3ARs in ameliorating myocardial ischaemia/reperfusion injury.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Androstadienes; Animals; Apoptosis; Butadienes; Cardiotonic Agents; Caspase 3; Disease Models, Animal; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocytes, Cardiac; Nitriles; Rats; Rats, Sprague-Dawley; Receptor, Adenosine A3; Signal Transduction; Wortmannin

2014
Interaction of SSR161421, a novel specific adenosine A(3) receptor antagonist with adenosine A(3) receptor agonists both in vitro and in vivo.
    European journal of pharmacology, 2013, Jan-15, Volume: 699, Issue:1-3

    A novel adenosine A(3) receptor antagonist (SSR161421) was characterized by both receptor binding assays and pharmacological tests. Binding studies on cloned human adenosine receptors showed that SSR161421 has high affinity for adenosine hA(3) receptors (K(i)=0.37 nM) with at least 1000-fold selectivity compared to hA(1), hA(2A) and hA(2B) receptors. The receptor antagonist nature of SSR161421 was determined in a functional study on Chinese hamster ovarian cells (CHO) cells expressing human adenosine A(3) receptors. SSR161421 competitively antagonized the effect of 2-chloro-N6-(3-iodobenzyl)-adenosine-5'-N-methylcarboxamide (Cl-IB-MECA) on cAMP production with a pA2 value in a luciferase reporter gene construct. In mice, intravenously administered SSR161421 inhibited the N6-(4-aminobenzyl)-adenosine-5'-N-methyl-uronamide dihydrochloride (AB-MECA) induced increase in plasma histamine levels (ED(50)=2.0mg/kg) and the Cl-IB-MECA evoked plasma extravasation (ID(50)=2.9 mg/kg) and oedema formation (ID(50)=4.6 mg/kg) in mouse ear.

    Topics: Adenosine; Adenosine A3 Receptor Agonists; Adenosine A3 Receptor Antagonists; Aminoquinolines; Animals; Benzamides; CHO Cells; Cricetinae; Cricetulus; Cyclic AMP; Disease Models, Animal; Drug Interactions; Edema; Histamine; Humans; Inhibitory Concentration 50; Male; Mice; Plasma; Receptors, Purinergic P1

2013
Post exposure administration of A(1) adenosine receptor agonists attenuates noise-induced hearing loss.
    Hearing research, 2010, Volume: 260, Issue:1-2

    Adenosine is a constitutive cell metabolite with a putative role in protection and regeneration in many tissues. This study was undertaken to determine if adenosine signalling pathways are involved in protection against noise injury. A(1) adenosine receptor expression levels were altered in the cochlea exposed to loud sound, suggesting their involvement in the development of noise injury. Adenosine and selective adenosine receptor agonists (CCPA, CGS-21680 and Cl-IB-MECA) were applied to the round window membrane of the cochlea 6h after noise exposure. Auditory brainstem responses measured 48h after drug administration demonstrated partial recovery of hearing thresholds (up to 20dB) in the cochleae treated with adenosine (non-selective adenosine receptor agonist) or CCPA (selective A(1) adenosine receptor agonist). In contrast, the selective A(2A) adenosine receptor agonist CGS-21680 and A(3) adenosine receptor agonist Cl-IB-MECA did not protect the cochlea from hearing loss. Sound-evoked cochlear potentials in control rats exposed to ambient noise were minimally altered by local administration of the adenosine receptor agonists used in the noise study. Free radical generation in the cochlea exposed to noise was reduced by administration of adenosine and CCPA. This study pinpoints A(1) adenosine receptors as attractive targets for pharmacological interventions to reduce noise-induced cochlear injury after exposure.

    Topics: Acoustic Stimulation; Adenosine; Adenosine A1 Receptor Agonists; Animals; Auditory Threshold; Cochlea; Cochlear Microphonic Potentials; Disease Models, Animal; Evoked Potentials, Auditory, Brain Stem; Hearing Loss, Noise-Induced; Male; Oxidative Stress; Phenethylamines; Rats; Rats, Wistar; Receptor, Adenosine A1; Time Factors; Tyrosine

2010
Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury.
    American journal of physiology. Heart and circulatory physiology, 2007, Volume: 293, Issue:6

    Although adenosine exerts cardio-and vasculoprotective effects, the roles and signaling mechanisms of different adenosine receptors in mediating skeletal muscle protection are not well understood. We used a mouse hindlimb ischemia-reperfusion model to delineate the function of three adenosine receptor subtypes. Adenosine A(3) receptor-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide (Cl-IBMECA; 0.07 mg/kg ip) reduced skeletal muscle injury with a significant decrease in both Evans blue dye staining (5.4 +/- 2.6%, n = 8 mice vs. vehicle-treated 28 +/- 6%, n = 7 mice, P < 0.05) and serum creatine kinase level (1,840 +/- 910 U/l, n = 13 vs. vehicle-treated 12,600 +/- 3,300 U/l, n = 14, P < 0.05), an effect that was selectively blocked by an A(3) receptor antagonist 3-ethyl-5-benzyl-2-methyl-6-phenyl-4-phenylethynyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS-1191; 0.05 mg/kg). The adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 0.05 mg/kg) also exerted a cytoprotective effect, which was selectively blocked by the A(1) antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 mg/kg). The adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680; 0.07 mg/kg)-induced decrease in skeletal muscle injury was selectively blocked by the A(2A) antagonist 2-(2-furanyl)-7-[3-(4-methoxyphenyl)propyl]-7H-pyrazolo[4,3-e] [1,2,4]triazolo[1,5-C]pyrimidin-5-amine (SCH-442416; 0.017 mg/kg). The protection induced by the A(3) receptor was abrogated in phospholipase C-beta2/beta3 null mice, but the protection mediated by the A(1) or A(2A) receptor remained unaffected in these animals. The adenosine A(3) receptor is a novel cytoprotective receptor that signals selectively via phospholipase C-beta and represents a new target for ameliorating skeletal muscle injury.

    Topics: Adenosine; Animals; Dihydropyridines; Disease Models, Animal; Hindlimb; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; Phenethylamines; Phospholipase C beta; Pyrazoles; Pyrimidines; Receptor, Adenosine A1; Receptor, Adenosine A2A; Receptor, Adenosine A3; Reperfusion Injury; Signal Transduction; Xanthines

2007
The impact of adenosine and A(2B) receptors on glucose homoeostasis.
    The Journal of pharmacy and pharmacology, 2006, Volume: 58, Issue:12

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

    Topics: Adenosine; Adenosine A2 Receptor Agonists; Adenosine A2 Receptor Antagonists; Adenosine A3 Receptor Agonists; Adenosine A3 Receptor Antagonists; Adenosine-5'-(N-ethylcarboxamide); Analysis of Variance; Animals; Antineoplastic Agents; Blood Glucose; Cell Line, Tumor; Diabetes Mellitus, Type 2; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Homeostasis; Insulin; Male; Phenethylamines; Radioimmunoassay; Rats; Rats, Wistar; Receptor, Adenosine A2B; Sulfonic Acids; Xanthines

2006
Characterization of adenosine receptor(s) involved in adenosine-induced bronchoconstriction in an allergic mouse model.
    American journal of physiology. Lung cellular and molecular physiology, 2003, Volume: 284, Issue:6

    We recently reported that adenosine caused bronchoconstriction and enhanced airway inflammation in an allergic mouse model. In this study, we further report the characterization of the subtype of adenosine receptor(s) involved in bronchoconstriction. 5'-(N-ethylcarboxamido)adenosine (NECA), a nonselective adenosine agonist, elicited bronchoconstriction in a dose-dependent manner. Little effects of N(6)-cyclopentyladenosine (A(1)-selective agonist) and 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (A(2A)-selective agonist) compared with NECA were observed in this model. 2-Chloro-N(6)-(3-iodobenzyl)-9-[5-(methylcarbamoyl)-beta-d-ribofuranosyl]adenosine, an A(3)-selective receptor agonist, produced a dose-dependent bronchoconstrictor response, which was blocked by selective A(3) antagonist 2,3-diethyl-4,5-dipropyl-6-phenylpyridine-3-thiocarboxylate-5-carboxylate (MRS1523). However, MRS1523 only partially inhibited NECA-induced bronchoconstriction. Neither selective A(1) nor A(2A) antagonists affected NECA-induced bronchoconstriction. Enprofylline, a relatively selective A(2B) receptor antagonist, blocked partly NECA-induced bronchoconstriction. Furthermore, a combination of enprofylline and MRS1523 completely abolished NECA-induced bronchoconstrictor response. Using RT-PCR, we found that all four adenosine receptor subtypes are expressed in control lungs. Allergen sensitization and challenge significantly increased transcript levels of the A(2B) and A(3) receptors, whereas the A(1) receptor message decreased. No change in transcript levels of A(2A) receptors was observed after allergen sensitization and challenge. These findings suggest that A(2B) and A(3) adenosine receptors play an important role in adenosine-induced bronchoconstriction in our allergic mouse model. Finally, whether the airway effects of the receptor agonists/antagonists are direct or indirect needs further investigations.

    Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Adrenergic Agonists; Adrenergic Antagonists; Animals; Asthma; Bronchoconstriction; Disease Models, Animal; Hypersensitivity; Lung; Male; Mice; Mice, Inbred BALB C; Phenethylamines; Pyridines; Receptors, Purinergic P1; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Vasodilator Agents

2003