2-chloro-5-hydroxyphenylglycine has been researched along with Seizures* in 2 studies
2 other study(ies) available for 2-chloro-5-hydroxyphenylglycine and Seizures
Article | Year |
---|---|
Down-regulation of Homer1b/c protects against chemically induced seizures through inhibition of mTOR signaling.
Homer is a family of post synaptic density proteins functionally and physically attached to target proteins at proline-rich sequences. Reducing Homer1b/c expression has been shown in previous studies to be protective against excitotoxic insults, implicating Homer1b/c in the physiological regulation of aberrant neuronal excitability.. To test the efficacy of a Homer1b/c reducing therapy for disorders with a detrimental hyperexcitability profile in mice, we used small interfere RNA (siRNA) to decrease endogenous Homer1b/c expression in mouse hippocampus. The baseline motor and cognitive behavior was measured by sensorimotor tests, Morris water maze and elevated plus maze tasks. The anti-epileptic effects of Homer1b/c knockdown were determined in two chemically induced seizure models induced by Picrotoxin (PTX) or pentylenetetrazole (PTZ) administration.. The results of sensorimotor tests, Morris water maze and elevated plus maze tasks showed that Homer1b/c reduction had no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced Homerb/c protein had less severe seizures than control mice. Total Homer1b/c protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of Homer1b/c. In addition, the phosphorylation of mammalian target of rapamycin (mTOR) and its target protein S6 was significantly inhibited in Homer1b/c down-regulated mice. Homer1b/c knockdown-induced inhibition of mTOR pathway was partially ablated by the metabotropic glutamate receptor 5 (mGluR5) agonist CHPG.. Our results demonstrate that endogenous Homer1b/c is integral for regulating neuronal hyperexcitability in adult animals and suggest that reduction of Homer1b/c could protect against chemically induced seizures through inhibition mTOR pathway. Topics: Animals; Behavior, Animal; Carrier Proteins; Disease Models, Animal; Down-Regulation; Glycine; Hippocampus; Homer Scaffolding Proteins; Maze Learning; Mice; PC12 Cells; Pentylenetetrazole; Phenylacetates; Phosphorylation; Picrotoxin; Rats; Receptor, Metabotropic Glutamate 5; Ribosomal Protein S6 Kinases; RNA Interference; Seizures; Signal Transduction; TOR Serine-Threonine Kinases | 2015 |
Epileptogenesis up-regulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala.
Postsynaptic metabotropic glutamate (mGlu) receptor-activated inward current mediated by Na(+)-Ca(2+) exchange was compared in basolateral amygdala (BLA) neurons from brain slices of control (naïve and sham-operated) and amygdala-kindled rats. In control neurons, the mGlu agonist, quisqualate (QUIS; 1-100 microM), evoked an inward current not associated with a significant change in membrane slope conductance, measured from current-voltage relationships between -110 and -60 mV, consistent with activation of the Na(+)-Ca(2+) exchanger. Application of the group I selective mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine [(S)-DHPG; 10-1000 microM] or the endogenous agonist, glutamate (10-1000 microM), elicited the exchange current. QUIS was more potent than either (S)-DHPG or glutamate (apparent EC(50) = 19 microM, 57 microM, and 0.6 mM, respectively) in activating the Na(+)-Ca(2+) exchange current. The selective mGlu5 agonist, (R, S)-2-chloro-5-hydroxyphenylglycine [(R,S)-CHPG; apparent EC(50) = 2. 6 mM] also induced the exchange current. The maximum response to (R, S)-DHPG was about half of that of the other agonists suggesting partial agonist action. Concentration-response relationships of agonist-evoked inward currents were compared in control neurons and in neurons from kindled animals. The maximum value for the concentration-response relationship of the partial agonist (S)-DHPG- (but not the full agonist- [QUIS or (R,S)-CHPG]) induced inward current was shifted upward suggesting enhanced efficacy of this agonist in kindled neurons. Altogether, these data are consistent with a kindling-induced up-regulation of a group I mGlu-, possibly mGlu5-, mediated responses coupled to Na(+)-Ca(2+) exchange in BLA neurons. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Calcium; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Kindling, Neurologic; Male; Membrane Potentials; Methoxyhydroxyphenylglycol; Phenylacetates; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Seizures; Sodium; Tetrodotoxin; Up-Regulation | 2000 |