2-acetylfuranonaphthoquinone has been researched along with Osteosarcoma* in 2 studies
2 other study(ies) available for 2-acetylfuranonaphthoquinone and Osteosarcoma
Article | Year |
---|---|
Role of crosstalk between STAT3 and mTOR signaling in driving sensitivity to chemotherapy in osteosarcoma cell lines.
Osteosarcoma (OS) is a malignant bone neoplasm, mostly occurring in pediatric patients. OS is characterized by a highly aggressive and metastatically active tumor. Chemotherapy followed by surgical excision is the treatment of choice but is often associated with both chemoresistance and relapse. Hence, it is important to develop further understanding of OS pathogenesis and identify potential therapeutic targets. Both the signal transducer and activator of transcription 3 (STAT3) and mammalian target of rapamycin (mTOR) have been implicated in OS pathogenesis. Crosstalk between mTOR and STAT3 signaling has been shown to regulate hypoxia-induced angiogenesis in other diseases. In this study, we determined using OS cell lines if there is a crosstalk between these two pathways and how that impacts sensitivity to treatment with Rapamycin. OS cell lines exhibited differential sensitivity to mTOR inhibitor Rapamycin. Evaluation of phosphorylated STAT3 showed that in Rapamycin-sensitive 143B cells, the inhibitor decreased phosphorylation of STAT3 at Y705, but not at S727 whereas, in Rapamycin-resistant U2OS cells, the inhibitor decreased S727 phosphorylation but not Y705. However, knockdown of STAT3 in U2OS cells made them sensitive to Rapamycin. Immunofluorescence (IF) analysis showed that mTOR is constitutively activated in the 143B cells but is suppressed in the U2OS cells, indicating that this might be their reason for being resistant to Rapamycin. Both cell lines were sensitive to treatment with the STAT3 inhibitor Napabucasin (NP). Treatment with NP inhibited STAT3 activation at Y705 and additionally inhibited mTOR activation, indicating crosstalk between STAT3 and mTOR signaling pathways. Rapamycin could effectively prevent lung metastasis in an orthotropic OS mice model using 143B cells. However, Rapamycin could not inhibit lung metastasis in mice injected with U2OS cells. The STAT3 inhibitor NP attenuated lung metastasis with the U2OS cells. Our results thus established yet undefined crosstalk of STAT3 and mTOR signaling pathways in OS and highlight the possibility of using mTOR inhibitors for treatment in patients with OS. Topics: Animals; Antibiotics, Antineoplastic; Benzofurans; Bone Neoplasms; Cell Line, Tumor; Drug Resistance, Neoplasm; Female; Humans; Mice, Inbred BALB C; Naphthoquinones; Osteosarcoma; Phosphorylation; Signal Transduction; Sirolimus; STAT3 Transcription Factor; TOR Serine-Threonine Kinases; Xenograft Model Antitumor Assays | 2020 |
Inhibition of STAT3 blocks protein synthesis and tumor metastasis in osteosarcoma cells.
Osteosarcoma is the most common bone cancer. Despite advances, molecular mechanisms associated with osteosarcoma have not been fully understood. Hence, an effective treatment for osteosarcoma has yet to be developed. Even though signal transducer and activator of transcription3 (STAT3) has been implicated, its role in pathogenesis of osteosarcoma is not fully determined. In this study, we investigated the antitumor effect of napabucasin (NP) (BBI608), an inhibitor of STAT3 on osteosarcoma in vitro and in vivo and studied the underlying molecular mechanism.. Cell viability, colony formation, apoptosis, tumor growth and metastasis assays were performed to examine the effect of NP on osteosarcoma in vitro and in vivo. Real-time RT-PCR, western analysis, immunofluorescence and reporter assays were used to monitor the expression and activity of proteins and underlying molecular pathways. Protein synthesis, co-immunoprecipitation and CAP binding assays were carried out to understand NP-mediated mechanism of actions in osteosarcoma cells.. Our results show that NP treatment decreases cell viability and induces apoptosis in several osteosarcoma cell lines. NP treatment suppresses both expression and phosphorylation of STAT3 in addition to blocking STAT3-mediated transcription and downstream target proteins in osteosarcoma cells. Furthermore, NP inhibits protein synthesis through regulation of the eukaryotic initiation factor 4E (eIF4E) and eIF4E-binding protein 1 (4E-BP1). NP also inhibits the progression of osteosarcoma tumors and metastasis in vivo in an orthotopic tibial model of osteosarcoma.. Taken together, our investigation reveals that NP acts through a novel mechanism and inhibits osteosarcoma growth and metastasis, and could be investigated clinically for treating osteosarcoma patients alone or in combination with other drugs. Topics: Animals; Apoptosis; Benzofurans; Bone Neoplasms; Cell Line, Tumor; Female; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Naphthoquinones; Neoplasm Metastasis; Osteosarcoma; Protein Synthesis Inhibitors; Random Allocation; STAT3 Transcription Factor; Xenograft Model Antitumor Assays | 2018 |