2-5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1-4-benzoquinone has been researched along with Neoplasms* in 4 studies
2 review(s) available for 2-5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1-4-benzoquinone and Neoplasms
Article | Year |
---|---|
Hypoxia: targeting the tumour.
Solid tumours contain regions of very low oxygen concentrations that are said to be hypoxic. Hypoxia is a natural phenotype of solid tumours resulting from an imperfect vascular network. There are a number of consequences associated with tumour hypoxia including: resistance to ionising radiation, resistance to chemotherapy and the magnification of mutated p53. In addition tissue hypoxia has been regarded as a key factor for tumour aggressiveness and metastasis by activation of signal transduction pathways and gene regulatory mechanisms. It is clear that hypoxia in solid tumours promotes a strong oncogenic phenotype and is a phenomenon that occurs in all solid tumours. As such this provides a significant target for drug discovery particularly for tumour-targeting agents. A range of chemical classes (N-oxides, quinones, nitro-aromatics) have been explored as bioreductive agents that target tumour hypoxia. The most advanced agent, tirapazamine, is in phase III clinical trials in combination with cis-platin. The aim of this review is to give a brief overview of the current molecules and strategies being explored for targeting tumour hypoxia. Topics: Anthraquinones; Antineoplastic Agents; Aziridines; Benzoquinones; Cell Hypoxia; Clinical Trials, Phase III as Topic; Drug Screening Assays, Antitumor; Humans; Imidazoles; Indolequinones; Neoplasms; Prodrugs; Quinolines; Radiation-Sensitizing Agents; Tirapazamine; Triazines | 2006 |
DT-diaphorase: a target for new anticancer drugs.
DT-diaphorase (DTD) is an obligate two-electron reductase which bioactivates chemotherapeutic quinones. DTD levels are elevated in a number of tumour types, including non-small cell lung carcinoma, colorectal carcinoma, liver cancers and breast carcinomas, when compared to the surrounding normal tissue. The differential in DTD between tumour and normal tissue should allow targeted activation of chemotherapeutic quinones in the tumour whilst minimising normal tissue toxicity. The prototypical bioreductive drug is Mitomycin C (MMC) which is widely used in clinical practice. However, MMC is actually a relatively poor substrate for DTD and its metabolism is pH-dependent. Other bioreductive drugs have failed because of poor solubility and inability to surpass other agents in use. RH1, a novel diaziridinylbenzoquinone, is a more efficient substrate for DTD. It has been demonstrated to have anti-tumour effects both in vitro and in vivo and demonstrates a relationship between DTD expression levels and drug response. RH1 has recently entered a phase I clinical trial in solid tumours under the auspices of Cancer Research UK. Recent work has demonstrated that DTD is present in the nucleus and is associated with both p53 and the heat shock protein, HSP-70. Furthermore, DTD is inducible by several non-toxic compounds and therefore much interest has focussed on increasing the differential in DTD levels between tumour and normal tissues. Topics: Antibiotics, Antineoplastic; Aziridines; Benzoquinones; Clinical Trials as Topic; Drug Resistance; Gene Expression Regulation, Neoplastic; Humans; Mitomycin; NAD(P)H Dehydrogenase (Quinone); Neoplasms; Polymorphism, Genetic; Quinones; Tumor Suppressor Protein p53 | 2004 |
1 trial(s) available for 2-5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1-4-benzoquinone and Neoplasms
Article | Year |
---|---|
Phase I pharmacokinetic and pharmacodynamic study of the bioreductive drug RH1.
This trial describes a first-in-man evaluation of RH1, a novel bioreductive drug activated by DT-diaphorase (DTD), an enzyme overexpressed in many tumours.. A dose-escalation phase I trial of RH1 was carried out. The primary objective was to establish the maximum tolerated dose (MTD) of RH1. Secondary objectives were assessment of toxicity, pharmacokinetic determination of RH1 and pharmacodynamic assessment of drug effect through measurement of DNA cross linking in peripheral blood mononuclear cells (PBMCs) and tumour, DTD activity in tumour and NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphism status.. Eighteen patients of World Health Organization performance status of zero to one with advanced refractory solid malignancies were enrolled. MTD was 1430 μg/m(2)/day with reversible bone marrow suppression being dose limiting. Plasma pharmacokinetic analysis showed RH1 is rapidly cleared from blood (t(1/2) = 12.3 min), with AUC increasing proportionately with dose. The comet-X assay demonstrated dose-related increases in DNA cross linking in PBMCs. DNA cross linking was demonstrated in tumours, even with low levels of DTD. Only one patient was homozygous for NQO1 polymorphism precluding any conclusion of its effect.. RH1 was well tolerated with predictable and manageable toxicity. The MTD of 1430 μg/m(2)/day is the dose recommended for phase II trials. The biomarkers of DNA cross linking, DTD activity and NQO1 status have been validated and clinically developed. Topics: Adult; Aged; Aziridines; Benzoquinones; Female; Follow-Up Studies; Humans; Male; Maximum Tolerated Dose; Middle Aged; NAD(P)H Dehydrogenase (Quinone); Neoplasms; Polymorphism, Genetic; Retrospective Studies; Tissue Distribution; Treatment Outcome | 2011 |
1 other study(ies) available for 2-5-diaziridinyl-3-(hydroxymethyl)-6-methyl-1-4-benzoquinone and Neoplasms
Article | Year |
---|---|
Effect of NQO1 induction on the antitumor activity of RH1 in human tumors in vitro and in vivo.
NQO1 is a reductive enzyme that is important for the activation of many bioreductive agents and is a target for an enzyme-directed approach to cancer therapy. It can be selectively induced in many tumor types by a number of compounds including dimethyl fumarate and sulforaphane. Mitomycin C is a bioreductive agent that is used clinically for treatment of solid tumors. RH1 (2,5-diaziridinyl-3-(hydroxymethyl)- 6-methyl-1,4-benzoquinone) is a new bioreductive agent currently in clinical trials. We have shown previously that induction of NQO1 can enhance the antitumor activity of mitomycin C in tumor cells in vitro and in vivo. As RH1 is activated selectively by NQO1 while mitomycin C is activated by many reductive enzymes, we investigated whether induction of NQO1 would produce a greater enhancement of the antitumor activity of RH1 compared with mitomycin C. HCT116 human colon cancer cells and T47D human breast cancer cells were incubated with or without dimethyl fumarate or sulforaphane followed by mitomycin C or RH1 treatment, and cytotoxic activity was measured by a clonogenic (HCT116) or MTT assay (T47D). Dimethyl fumarate and sulforaphane treatment increased NQO1 activity by 1.4- to 2.8-fold and resulted in a significant enhancement of the antitumor activity of mitomycin C, but not of RH1. This appeared to be due to the presence of a sufficient constitutive level of NQO1 activity in the tumor cells to fully activate the RH1. Mice were implanted with HL60 human promyelocytic leukemia cells, which have low levels of NQO1 activity. The mice were fed control or dimethyl fumarate-containing diet and were treated with RH1. NQO1 activity in the tumors increased but RH1 produced no antitumor activity in mice fed control or dimethyl fumarate diet. This is consistent with a narrow window of NQO1 activity between no RH1 activation and maximum RH1 activation. This study suggests that selective induction of NQO1 in tumor cells is not likely to be an effective strategy for enhancing the antitumor activity of RH1. In addition, we found that RH1 treatment produced significant leukopenia in mice that may be of concern in the clinic. These results suggest that the ease of reduction of RH1 by NQO1 makes it a poor candidate for an enzyme-directed approach to cancer therapy. Topics: Animals; Antineoplastic Agents; Aziridines; Benzoquinones; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Enzyme Induction; Female; Formazans; Leukopenia; Mice; Mice, Inbred Strains; Mice, Nude; Mitomycin; NAD(P)H Dehydrogenase (Quinone); NADPH Dehydrogenase; Neoplasms; Tetrazolium Salts; Toxicity Tests; Xenograft Model Antitumor Assays | 2005 |