2,5-di-tert-butylhydroquinone has been researched along with Disease Models, Animal in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Abrams, RPM; Bachani, M; Balasubramanian, A; Brimacombe, K; Dorjsuren, D; Eastman, RT; Hall, MD; Jadhav, A; Lee, MH; Li, W; Malik, N; Nath, A; Padmanabhan, R; Simeonov, A; Steiner, JP; Teramoto, T; Yasgar, A; Zakharov, AV | 1 |
Bai, Y; Benitez, R; Chen, SR; Clark, RB; Duff, HJ; Guo, A; Guo, J; Hove-Madsen, L; Jones, PP; Semeniuk, L; Song, LS; Vallmitjana, A; Wang, R; Zhong, X; Zhou, Q | 1 |
2 other study(ies) available for 2,5-di-tert-butylhydroquinone and Disease Models, Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Phospholamban knockout breaks arrhythmogenic Ca²⁺ waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Caffeine; Calcium Signaling; Calcium-Binding Proteins; Calcium-Transporting ATPases; Cells, Cultured; Disease Models, Animal; Electrocardiography; Hydroquinones; Isoproterenol; Lithium Chloride; Mice; Mice, Knockout; Mutation, Missense; Myocytes, Cardiac; Patch-Clamp Techniques; Ryanodine Receptor Calcium Release Channel; Sarcoplasmic Reticulum; Tachycardia, Ventricular; Ultrasonography | 2013 |