2-4-diaminohypoxanthine has been researched along with Hypertension* in 2 studies
2 other study(ies) available for 2-4-diaminohypoxanthine and Hypertension
Article | Year |
---|---|
Acute inhibition of guanosine triphosphate cyclohydrolase 1 uncouples endothelial nitric oxide synthase and elevates blood pressure.
GTP cyclohydrolase 1 (GTPCH1) is the rate-limiting enzyme in de novo synthesis of tetrahydrobiopterin (BH4), an essential cofactor for endothelial NO synthase (eNOS) dictating, at least partly, the balance of NO and superoxide produced by this enzyme. The aim of this study was to determine the effect of acute inhibition of GTPCH1 on BH4, eNOS function, and blood pressure (BP) in vivo. Exposure of bovine or mouse aortic endothelial cells to GTPCH1 inhibitors (2,4-diamino-6-hydroxypyrimidine or N-acetyl-serotonin) or GTPCH1 small-interference RNA (siRNA) significantly reduced BH4 and NO levels but increased superoxide levels. This increase was abolished by sepiapterin (BH4 precursor) or N(G)-nitro-L-arginine methyl ester (nonselective NOS inhibitor). Incubation of isolated murine aortas with 2,4-diamino-6-hydroxypyrimidine or N-acetyl-serotonin impaired acetylcholine-induced endothelium-dependent relaxation but not endothelium-independent relaxation. Aortas from GTPCH1 siRNA-injected mice, but not their control-siRNA injected counterparts, also exhibited impaired endothelium-dependent relaxation. BH4 reduction induced by GTPCH1 siRNA injection was associated with increased aortic levels of superoxide, 3-nitrotyrosine, and adhesion molecules (intercellular adhesion molecule 1 and vascular cell adhesion molecule 1), as well as a significantly elevated systolic, diastolic, and mean BP in C57BL6 mice. GTPCH1 siRNA was unable to elicit these effects in eNOS(-/-) mice. Sepiapterin supplementation, which had no effect on high BP in eNOS(-/-) mice, partially reversed GTPCH1 siRNA-induced elevation of BP in wild-type mice. In conclusion, GTPCH1 via BH4 maintains normal BP and endothelial function in vivo by preserving NO synthesis by eNOS. Topics: Animals; Aorta; Biopterins; Blood Pressure; Cattle; Endothelial Cells; Enzyme Inhibitors; GTP Cyclohydrolase; Hypertension; Hypoxanthines; Mice; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Organ Culture Techniques; Oxidative Stress; Pterins; RNA, Small Interfering; Serotonin; Superoxides; Vasodilation | 2008 |
GTP cyclohydrolase 1 inhibition attenuates vasodilation and increases blood pressure in rats.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 mg.kg(-1).day(-1)) to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats. Topics: Animals; Blood Pressure; Endothelium, Vascular; Enzyme Inhibitors; Gene Expression Regulation, Enzymologic; GTP Cyclohydrolase; Hypertension; Hypoxanthines; Male; Rats; Rats, Sprague-Dawley; RNA, Messenger; Vasodilation | 2003 |