2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and Wounds-and-Injuries

2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with Wounds-and-Injuries* in 2 studies

Other Studies

2 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and Wounds-and-Injuries

ArticleYear
Neuronal death enhanced by N-methyl-D-aspartate antagonists.
    Proceedings of the National Academy of Sciences of the United States of America, 2000, Nov-07, Volume: 97, Issue:23

    Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective.

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Injuries; Cell Death; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Memantine; N-Methylaspartate; Neurons; Neuroprotective Agents; Neurotoxins; Nitro Compounds; Piperazines; Propionates; Quinoxalines; Rats; Rats, Wistar; Wounds and Injuries

2000
Prevention of trauma-induced neurodegeneration in infant rat brain.
    Pediatric research, 1996, Volume: 39, Issue:6

    Recent evidence implicates the endogenous excitatory neurotransmitters, glutamate (Glu) and aspartate, in the pathophysiology of traumatic injury in the adult CNS, but it is not known whether similar excitotoxic mechanisms mediate traumatic injury in the immature CNS. Therefore, we developed a model of brain contusion injury in infant rats and used this model to study the nature and evolution of the acute cytopathologic changes and to evaluate the ability of Glu receptor antagonists to protect the immature brain against such changes. Seven-day-old rat pups were subjected to contusion injury and were killed 0, 0.5, 1, 2, 4, and 6 h later for histologic evaluation of the brain. Physical tearing of the dura and minor disruption of underlying brain tissue was noted at 0 h. At 30 min a discrete zone of neuronal necrosis began to appear at the border of the trauma site; this zone progressively expanded over a period of 4 h. The cytopathologic changes closely resembled the type of changes Glu is known to cause; these changes consisted of swollen dendrites, degenerating neurons with pyknotic nuclei and markedly swollen cytoplasm, and dark cells with vacuolated cytoplasm. The noncompetitive N-methyl-D-aspartate (NMDA) antagonist, dizocilpine maleate, when administered 30 min before or 1 h after trauma, significantly attenuated the lesion. The competitive NMDA antagonist, 3-((-2)-carboxypiperazine-4-yl)-propyl-1-phosphonate, was also neuroprotective. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor antagonist 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline did not significantly suppress the lesion when given as three treatments (30 mg/kg each) 30 min before plus 15 and 75 min after the insult. These findings suggest that traumatic injury in the infant rat brain is mediated by endogenous excitotoxins (Glu and aspartate) acting at NMDA receptors and can be substantially mitigated by timely treatment with NMDA receptor antagonists.

    Topics: Animals; Brain Injuries; Dendrites; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Time Factors; Wounds and Injuries

1996