2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with Nerve-Degeneration* in 22 studies
22 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and Nerve-Degeneration
Article | Year |
---|---|
Novel alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor antagonists of 2,3-benzodiazepine type: chemical synthesis, in vitro characterization, and in vivo prevention of acute neurodegeneration.
Under pathophysiological conditions, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor activation is considered to play a key role in several disorders of the central nervous system. In the search for AMPA receptor antagonists, the synthesis and pharmacological characterization of a series of novel compounds that are structurally related to GYKI 52466 (1), a well-known selective noncompetitive AMPA receptor antagonist, was performed. In vitro, 2,3-dimethyl-6-phenyl-12H-[1,3]dioxolo[4,5-h]imidazo[1,2-c][2,3]benzodiazepine (ZK 187638, 14a) antagonized the kainate-induced currents in cultured hippocampal neurons with an IC(50) of 3.4 microM in a noncompetitive fashion. When tested in a clinically predictive rat model of acute ischemic stroke, this noncompetitive AMPA receptor antagonist significantly reduced brain infarction, indicating that it is neuroprotective after permanent focal cerebral ischemia. Topics: Acute Disease; Animals; Benzodiazepines; Binding, Competitive; Brain Infarction; Cells, Cultured; Dioxoles; Hippocampus; In Vitro Techniques; Ischemic Attack, Transient; Kainic Acid; Male; Mice; Nerve Degeneration; Neuroprotective Agents; Patch-Clamp Techniques; Prosencephalon; Radioligand Assay; Rats; Rats, Inbred F344; Receptors, AMPA | 2005 |
The effects of AMPA receptor antagonists in models of stroke and neurodegeneration.
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists have been shown to have neuroprotective effects in stroke models and although clinical trials with some agents are still ongoing, published results have not been favourable. We therefore wished to compare the effects of GYKI 52466, GYKI 53405, EGIS-8332 and EGIS-10608, non-competitive AMPA receptor antagonists with homophthalazine chemical structures, in standard animal stroke models with effects in a neurodegenerative model--excitoxicity in newborn mice. All compounds inhibited the S-AMPA-induced spreading depression in the chicken retina, in vitro, and were potent anticonvulsants against maximal electroshock in mice, in vivo. The AMPA receptor antagonists prevented domoate-induced cell death of motoneurons, in vitro, and reduced infarct size in a dose-dependent manner in the permanent middle cerebral artery occlusion model in mice, in vivo. In newborn mice (P5, histopathology at P10), local injection of the AMPA receptor agonist S-bromo-willardiine at day 5 after birth induced cortical damage and white matter damage, which was reduced in a dose-dependent manner by the AMPA receptor antagonists. EGIS 10608 was a very powerful receptor antagonist of white matter damage. In contrast, GYKI 52466 did not antagonize cortical and white matter damage induced by ibotenic acid. These models allow quantification of the effects of AMPA receptor antagonists in vitro and in vivo. Topics: Animals; Animals, Newborn; Anticonvulsants; Benzodiazepines; Brain; Brain Ischemia; Cell Survival; Chickens; Cortical Spreading Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Electroshock; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred Strains; Motor Neurons; Nerve Degeneration; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Retina; Seizures; Stroke | 2005 |
p21(WAF1/Cip1) is not involved in kainic acid-induced apoptosis in murine cerebellar granule cells.
Kainic acid (KA) treatment induced neuronal death and apoptosis in murine cerebellar granule cells (CGNs) cultures from both wild-type and knockout p21(-/-) mice. There was not statistically significant difference in the percentage of neuronal apoptosis among strains. KA-induced neurotoxicity was prevented in the presence of NBQX (20 microM) and GYKI 52446 (20 microM), but not by z-VAD-fmk, suggesting that caspases are not involved in the apoptotic process. Data suggest that p21(WAF/Cip) was unable to modulate KA-induced apoptosis in murine CGNs. Topics: Animals; Apoptosis; Benzodiazepines; Cell Cycle; Cell Cycle Proteins; Cells, Cultured; Cerebellum; Cyclin-Dependent Kinase Inhibitor p21; Excitatory Amino Acid Antagonists; Kainic Acid; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Degeneration; Neurons; Quinoxalines; Receptors, AMPA | 2004 |
Ability of NMDA and non-NMDA receptor antagonists to inhibit cerebral ischemic damage in aged rats.
Although stroke is a major cause of death and disability in the elderly, the inhibitory effects of neuroprotectants in acute stroke have been investigated using experimental cerebral ischemic models of young animals. Recent clinical trials have found that few neuroprotectants are effective. These observations indicate that effects in the clinical setting do not always reflect data from young animals. Thus, we compared the effects of the NMDA receptor antagonist MK-801 and of the AMPA receptor antagonist NBQX [2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinixaline] on ischemic cerebral damage in the photothrombosis model of aged and young rats. MK-801 administered immediately after MCA occlusion significantly (P<0.05) reduced the extent of cerebral damage in young, but not in aged, rats and the effects of NBQX were similar. In separate experiments, we evaluated brain damage after microinjecting NMDA or kainic acid into the cortex using a stereotaxic apparatus. We found no significant differences in focal cerebral damage caused by NMDA between young and aged rats. On the other hand, kainic acid caused all of the aged rats tested to die, but none of the young rats. Our observations indicate that NMDA and AMPA receptor antagonists are less effective in aged, than in young, rats and that cerebral damage by receptor agonists depends on the type of receptor, such as NMDA and AMPA. Topics: Aging; Animals; Brain Ischemia; Cerebral Infarction; Disease Models, Animal; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Infarction, Middle Cerebral Artery; Kainic Acid; Male; Nerve Degeneration; Neurons; Neuroprotective Agents; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Telencephalon | 2003 |
Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo.
The intrahippocampal administration of 4-aminopyridine (4-AP) induces epileptic seizures and neurodegeneration, due probably to stimulation of glutamate release from synaptic terminals. We have studied the time course of the neurodegenerative changes produced by 4-AP, perfused through microdialysis cannulas in rat hippocampus, and correlated them with the expression of the inducible heat shock protein 70 (HSP70), detected immunocytochemically. Electroencephalographic seizure activity appeared immediately after the beginning of 4-AP perfusion. The first signs of histological neuronal damage were observed in CA1 and CA3 subfields of the perfused hippocampus 3 h after treatment and progressed until reaching a maximal neuronal loss at 24 h. In 4-AP-treated rats HSP70 was expressed mainly in neurons of the contralateral hippocampus, with a time course and cellular distribution very similar to the neurodegeneration observed in the perfused hippocampus, but no neuronal damage was observed. The N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and (3-phosphonopropyl)-piperazine-2-carboxylic acid prevented the seizures, the neurodegeneration and the expression of HSP70. These data demonstrate that the 4-AP-induced release of endogenous glutamate overactivates NMDA receptors in the perfused hippocampus and that the resulting neuronal hyperexcitability propagates to the contralateral hippocampus, generating a glutamate-mediated neuronal stress sufficient to induce the expression of HSP70 but not to produce neurodegeneration. These findings provide a useful model for investigating the relationships between neuronal hyperexcitation, neurodegeneration and the role of HSP expression. Topics: 4-Aminopyridine; Animals; Anticonvulsants; Cell Count; Chromatography, High Pressure Liquid; Dizocilpine Maleate; Drug Interactions; Electroencephalography; Epilepsy; Extracellular Space; Functional Laterality; Gene Expression; Glutamic Acid; Hippocampus; HSP70 Heat-Shock Proteins; Immunohistochemistry; Male; Microdialysis; Nerve Degeneration; Neuroprotective Agents; Piperazines; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Somatosensory Cortex; Stress, Physiological; Time Factors | 2003 |
Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity.
The developing cortical neurons have been well documented to be extremely vulnerable to the toxic effect of methylmercury (MeHg). In the present study, a possible involvement of N-methyl-D-aspartate (NMDA) receptors in MeHg neurotoxicity was examined because the sensitivity of cortical neurons to NMDA neurotoxicity has a similar developmental profile. Rats on postnatal day 2 (P2), P16, and P60 were orally administered MeHg (10 mg/kg) for 7 consecutive days. The most severe neuronal damage was observed in the occipital cortex of P16 rats. When MK-801 (0.1 mg/kg), a non-competitive antagonist of NMDA, was administered intraperitoneally with MeHg, MeHg-induced neurodegeneration was markedly ameliorated. Furthermore, there was a marked accumulation of nitrotyrosine, a reaction product of peroxynitrite and L-tyrosine, after chronic treatment of MeHg in the occipital cortex of P16 rats. The accumulation of nitrotyrosine was also significantly suppressed by MK-801. In the present electrophysiological study, the amplitude of synaptic responses mediated by NMDA receptors recorded in cortical neurons of P16 rats was significantly larger than those from P2 and P60 rats. These observations strongly suggest that a generation of peroxynitrite through activation of NMDA receptors is a major causal factor for MeHg neurotoxicity in the developing cortical neurons. Furthermore, enhanced sensitivity of NMDA receptors may make the cortical neurons of P16 rats most susceptible to MeHg neurotoxicity. Topics: Age Factors; Animals; Animals, Newborn; Antigens, CD; Antigens, Neoplasm; Antigens, Surface; Avian Proteins; Basigin; Blood Proteins; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Membrane Glycoproteins; Mercury Poisoning, Nervous System; Methylmercury Compounds; Nerve Degeneration; Neurons; Nitrates; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tyrosine | 2001 |
The role of kainic acid/AMPA and metabotropic glutamate receptors in the regulation of opioid mRNA expression and the onset of pain-related behavior following excitotoxic spinal cord injury.
Intraspinal injection of quisqualic acid, a mixed kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid and metabotropic glutamate receptor agonist, produces an excitotoxic injury that leads to the onset of both spontaneous and evoked pain behavior as well as changes in spinal and cortical expression of opioid peptide mRNA, preprodynorphin and preproenkephalin. What characteristics of the quisqualic acid-induced injury are attributable to activation of each receptor subtype is unknown. This study attempted to define the role of activation of the kainic acid/2-amino-3(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) and metabotropic glutamate receptor subtypes in the regulation of opioid peptide expression and the onset of spontaneous and evoked pain-related behavior following excitotoxic spinal cord injury by comparing quisqualic acid-induced changes with those created by co-injection of quisqualic acid and the kainic acid/AMPA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline, (NBQX) or the metabotropic antagonist, (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Therefore, 42 male Long-Evans adult rats were divided into seven treatment groups and received intraspinal microinjections of saline (sham), 0.5% dimethylsulphoxide (sham), quisqualic acid (1.2 microl, 125 mM), NBQX (1.2 microl, 60 microM), AIDA (1.2 microl, 250 microM), quisqualic acid/NBQX (1.2 microl, 125 mM/60 microM), or quisqualic acid/AIDA (1.2 microl, 125 mM/250 microM) directed at spinal levels thoracic 12-lumbar 2. Behavioral observations of spontaneous and evoked pain responses were completed following surgery. After a 10-day survival period, animals were killed and brain and spinal cord tissues were removed and processed for histologic analysis and in situ hybridization. Both AIDA and NBQX affected the quisqualic acid-induced total lesion volume but only AIDA caused a decrease in the percent tissue damage at the lesion epicenter. Preprodynorphin and preproenkephalin expression is increased in both spinal and cortical areas in quisqualic acid-injected animals versus sham-, NBQX or AIDA-injected animals. NBQX did not affect quisqualic acid-induced spinal or cortical expression of preprodynorphin or preproenkephalin except for a significant decrease in preproenkephalin expression in the spinal cord. In contrast, AIDA significantly decreases quisqualic acid-induced preprodynorphin and preproenkephalin expression within the spinal cord and cortex. AIDA, b Topics: Animals; Behavior, Animal; Dynorphins; Enkephalins; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Grooming; Indans; Male; Nerve Degeneration; Neurons; Neurotoxins; Opioid Peptides; Pain; Pain Measurement; Protein Precursors; Quinoxalines; Rats; Rats, Long-Evans; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; RNA, Messenger; Spinal Cord; Spinal Cord Injuries | 2001 |
Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain.
Programmed cell death (apoptosis) occurs during normal development of the central nervous system. However, the mechanisms that determine which neurons will succumb to apoptosis are poorly understood. Blockade of N-methyl-D-aspartate (NMDA) glutamate receptors for only a few hours during late fetal or early neonatal life triggered widespread apoptotic neurodegeneration in the developing rat brain, suggesting that the excitatory neurotransmitter glutamate, acting at NMDA receptors, controls neuronal survival. These findings may have relevance to human neurodevelopmental disorders involving prenatal (drug-abusing mothers) or postnatal (pediatric anesthesia) exposure to drugs that block NMDA receptors. Topics: Animals; Apoptosis; Brain; Calcium Channel Blockers; Dizocilpine Maleate; Dopamine Antagonists; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fetus; Haloperidol; Immunohistochemistry; In Situ Nick-End Labeling; Microscopy, Electron; Muscarinic Antagonists; Nerve Degeneration; Neurons; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Scopolamine | 1999 |
Dizocilpine maleate, MK-801, but not 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline, NBQX, prevents transneuronal degeneration of nigral neurons after neurotoxic striatal-pallidal lesion.
Unilateral neurotoxin lesion of rat caudate-putamen and globus pallidus resulted in delayed, transneuronal degeneration of GABAergic substantia nigra pars reticulata neurons. To explore whether the disinhibition of endogenous glutamate excitatory input played a role in the degeneration of substantia nigra pars reticulata neurons, animals with unilateral striatal-pallidal lesions received three daily intraperitoneal injections of either dizocilpine maleate (MK-801, 1 or 10 mg/kg), an N-methyl-D-aspartate glutamate receptor blocker, or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX, 30 mg/kg), an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor blocker, that began 24 h after the striatal-pallidal neurotoxin lesion. Drug treatment affected neither the volume of the initial lesion nor the volume of striatal-pallidal glial fibrillary acidic protein immunoreactivity. Neuron number in the substantia nigra pars reticulata ipsilateral to the lesioned striatopallidum was reduced on average by 37% in untreated control rats, in low dose MK-801, and NBQX-treated rats (P<0.0001). However, in animals treated with high doses of MK-801 there was no difference in the number of neurons in the substantia nigra pars reticulata ipsilateral or contralateral to the neurotoxin lesion. These data demonstrate that dose-related treatment with N-methyl-D-aspartate glutamate receptor blockers protects substantia nigra pars reticulata neurons, and suggests that glutamatergic mechanisms play a role in delayed transneuronal degeneration. Topics: Animals; Corpus Striatum; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Excitatory Amino Acid Antagonists; Globus Pallidus; Ibotenic Acid; Male; Nerve Degeneration; Neurons; Neuroprotective Agents; Neurotoxins; Putamen; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Glutamate; Substantia Nigra | 1999 |
Biochemical and pharmacological evidence of a functional role of AMPA receptors in motor neuron dysfunction in mnd mice.
We studied ionotropic glutamate receptor subtypes and the effect of chronic treatment with NBQX [6-nitro-7-sulphamoyl-benzo(F)quinoxaline-2,3-dione], a selective (rs)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist, in the spinal cord of mnd mice. NBQX (8 mg/kg daily i.p. for 3 weeks starting from 24 weeks old) significantly improved the behavioural scores (hind leg extension reflex, cage rung grasping and gait) in mnd mice, measured after the last drug injection, and increased the number of mice with 'normal' gait (from 50% to 90%, P < 0.05). Receptor binding autoradiography of the competitive N-methyl-D-aspartate (NMDA) antagonist, [3H]CGP 39653, of [3H]AMPA and [3H]kainic acid in spinal cord sections, measured after 1 week of drug washout, were not significantly different in control and mnd mice, and were not modified by NBQX. GluR2/3 immunoreactivity, assessed using Western blotting, was significantly enhanced (by 59%, P < 0.01) in the spinal cord but not in the brain of 28-week-old mnd mice compared to age-matched control mice. NBQX treatment increased GluR2/3 immunoreactivity in the spinal cord of control mice and mnd mice by 327 +/- 74% (P < 0.01) and 212 +/- 52% (P < 0.01), respectively. The changes in GluR2/3 subunits may involve adaptive mechanisms of the receptor and play some role in the protective effect of NBQX. These findings suggest that selective antagonism of ionotropic non-NMDA receptors may be of value in the treatment of motor neuron disease. Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amyotrophic Lateral Sclerosis; Animals; Antibodies; Autoradiography; Blotting, Western; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Male; Mice; Mice, Mutant Strains; Motor Neurons; Nerve Degeneration; Neurotoxins; Quinoxalines; Receptors, AMPA; Spinal Cord; Tritium | 1999 |
The diazoxide derivative IDRA 21 enhances ischemic hippocampal neuron injury.
The diazoxide derivative IDRA 21 and other positive modulators of (AMPA)-type glutamate receptors are considered potential memory-enhancing agents. However, AMPA receptor activation contributes to CA1 hippocampal neuron damage from global ischemia in rodents, raising the possibility that 7-chloro-3-methyl-3-4-dihydro-2H-1,2,4 benzothiadiazine S,S-dioxide (IDRA 21) or drugs with similar actions may worsen ischemic neuronal injury. Here we demonstrate that glutamate plus IDRA 21 kills cultured rat hippocampal neurons by AMPA receptor activation, and, in vivo, 12 and 24 mg/kg of IDRA 21 given orally increases CA1 neuron loss produced by 10 minutes of global ischemia. Treating patients with drugs that potentiate AMPA receptor activation will have to consider these potential effects, particularly when coexistent with conditions in which excessive activation of AMPA receptors may occur (eg, stroke, seizures). Topics: Animals; Benzothiadiazines; Brain Ischemia; Cells, Cultured; Diazoxide; Diuretics; Excitatory Amino Acid Antagonists; Glutamic Acid; Hippocampus; Nerve Degeneration; Neurons; Neurotoxins; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, AMPA; Sodium Chloride Symporter Inhibitors | 1998 |
Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline.
The mechanisms of neuronal degeneration following traumatic head injury are not well understood and no adequate treatment is currently available for the prevention of traumatic brain damage in humans. Traumatic head injury leads to primary (at impact) and secondary (distant) damage to the brain. Mechanical percussion of the rat cortex mimics primary damage seen after traumatic head injury in humans; no animal model mimicking the secondary damage following traumatic head injury has yet been established. Rats subjected to percussion trauma of the cortex showed primary damage in the cortex and secondary damage in the hippocampus. Morphometric analysis demonstrated that both cortical and hippocampal damage was mitigated by pretreatment with either the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)- 2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) or the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX). Neither treatment prevented primary damage in the cortex when therapy was started after trauma. Surprisingly, delayed treatment of rats with NBQX, but not with CPP, beginning between 1 and 7 hr after trauma prevented hippocampal damage. No protection was seen when therapy with NBQX was started 10 hr after trauma. These data indicate that both NMDA- and non-NMDA-dependent mechanisms contribute to the development of primary damage in the cortex, whereas non-NMDA mechanisms are involved in the evolution of secondary damage in the hippocampus in rats subjected to traumatic head injury. The wide therapeutic time-window documented for NBQX suggests that antagonism at non-NMDA receptors may offer a novel therapeutic approach for preventing deterioration of the brain after head injury. Topics: Animals; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Excitatory Amino Acid Antagonists; Hippocampus; Humans; Male; N-Methylaspartate; Nerve Degeneration; Neurons; Piperazines; Quinoxalines; Rats; Rats, Inbred F344; Time Factors; Wounds, Nonpenetrating | 1996 |
The AMPA antagonist NBQX protects thalamic reticular neurons from degeneration following cardiac arrest in rats.
Thalamic reticular (RT) neurons are selectively vulnerable to degeneration following global ischemia. The degenerative mechanism is thought to involve an excitotoxic component, mediated in part by sustained post-ischemic activation of AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) type excitatory amino acid (EAA) receptors. In order to test this hypothesis, the selective competitive AMPA type EAA antagonist NBQX (2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F) quinoxalinedione) was administered at 30 mg/kg to rats 1, 3, and 6 h after resuscitation from 10 min cardiac arrest. NBQX treatment resulted in a 2-fold increase of spared RT neurons, from a mean density of 3.6 +/- 0.8 x 10(3) neurons/mm3 in cardiac arrest cases to 7.4 +/- 1.1 x 10(3) neurons/mm3 in the NBQX treated group, which represents sparing of 41.7% of the normal population of RT neurons, and protection of 26.9% of vulnerable RT neurons. Neurons within the central core of the RT manifest both a higher degree of vulnerability to ischemic degeneration, > 92% loss, and a higher sensitivity to sparing following NBQX administration, 460% increased sparing, than neuronal sub-populations in the medial or lateral 1/3 of the RT. Protection by post-arrest administration of NBQX suggests that sustained post-arrest stimulation of AMPA receptors is an important component in the process of ischemic degeneration of RT neurons. Topics: Animals; Excitatory Amino Acid Antagonists; Heart Arrest; Male; Nerve Degeneration; Neurons; Quinoxalines; Rats; Receptors, AMPA; Reticular Formation; Thalamus | 1995 |
Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study.
It is well documented that neurons exposed to high concentrations of excitatory amino acids, such as glutamate and aspartate, degenerate and die. The clearance of these amino acids from the synaptic cleft depends mainly on their transport by high-affinity sodium-dependent carriers. Using microdialysis in vivo and HPLC analysis, we have studied the effect of the administration of inhibitors of the glutamate transporter (L-trans-pyrrolidine-2,4-dicarboxylate and dihydrokainate) on the extracellular concentration of endogenous amino acids in the rat striatum. In addition, we have analyzed whether the changes observed in the concentration of glutamate and aspartate were injurious to striatal cells. Neuronal damage was assessed by biochemical determination of choline acetyltransferase and glutamate decarboxylase activities, 7 days after the microdialysis procedure. In other experiments, pyrrolidine dicarboxylate and dihydrokainate, as well as two other inhibitors of the glutamate carrier, DL-threo-beta-hydroxyaspartate and L-aspartate-beta-hydroxamate, were microinjected into the striatum, and neuronal damage was assessed, both biochemically and histologically, 7 or 14 days after the injection. Dihydrokainate and pyrrolidine dicarboxylate produced a similar remarkable increase in the concentration of extracellular aspartate and glutamate. However, the former induced also notable elevations in the concentration of other amino acids. Clear neuronal damage was observed only after dihydrokainate administration, which was partially prevented by intraperitoneal injection of (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate or by intrastriatal coinjection of 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline. No cell damage was observed with the other three glutamate carrier inhibitors used. It is concluded that an increased extracellular glutamate level in vivo due to dysfunction of its transporter is not sufficient for inducing neuronal damage. The neurotoxic effects of dihydrokainate could be explained by direct activation of glutamate postsynaptic receptors, an effect not shared by the other inhibitors used. Topics: Animals; Cell Death; Choline; Choline O-Acetyltransferase; Corpus Striatum; Dicarboxylic Acids; Dizocilpine Maleate; Extracellular Space; gamma-Aminobutyric Acid; Glutamate Decarboxylase; Glutamic Acid; Kainic Acid; Male; Microdialysis; Nerve Degeneration; Neurons; Neurotransmitter Uptake Inhibitors; Pyrrolidines; Quinoxalines; Rats; Rats, Wistar | 1995 |
Potentiated necrosis of cultured cortical neurons by neurotrophins.
The effects of neurotrophins on several forms of neuronal degeneration in murine cortical cell cultures were examined. Consistent with other studies, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4/5 all attenuated the apoptotic death induced by serum deprivation or exposure to the calcium channel antagonist nimodipine. Unexpectedly, however, 24-hour pretreatment with these same neurotrophins markedly potentiated the necrotic death induced by exposure to oxygen-glucose deprivation or N-methyl-D-aspartate. Thus, certain neurotrophins may have opposing effects on different types of death in the same neurons. Topics: Animals; Apoptosis; Brain-Derived Neurotrophic Factor; Calcium; Cell Death; Cells, Cultured; Cerebral Cortex; Dizocilpine Maleate; Mice; N-Methylaspartate; Necrosis; Nerve Degeneration; Nerve Growth Factors; Nerve Tissue Proteins; Neurons; Neurotrophin 3; Quinoxalines; Receptors, AMPA | 1995 |
2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline protects against both AMPA and kainate-induced lesions in rat striatum in vivo.
In the present work we have tested the neuroprotective effect of 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) on the excitotoxic damage induced by the injection of several glutamate receptor agonists into the rat striatum. NBQX was co-injected with each of the agonists studied (1 microliter) in the striatum and damage was assessed by the determination of both glutamate decarboxylase and choline acetyltransferase activities in striatal homogenates, five days after the lesion. Additionally, animals were transcardially perfused with 0.9% saline/4% paraformaldehyde and brain coronal sections were stained with Cresyl Violet for histological analysis. Our results show that NBQX (25 nmol) did not protect against the damage induced by the intrastriatal injection of 200 nmol quinolinic acid monitored by either choline acetyltransferase or glutamate decarboxylase activity. In contrast, the same concentration of NBQX partially protected against 200 nmol N-methyl-D-aspartate induced damage; this protection was more notable as detected by changes in choline acetyltransferase activity. When non-N-methyl-D-aspartate receptor agonists were used as excitotoxins, coinjection of NBQX (25 nmol) resulted in a notable protection against both alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA, 40 nmol) and kainate (10 nmol) induced neurodegeneration. At this concentration, protection was slightly better in AMPA-injected animals (71% protection averaged from choline acetyltransferase and glutamate decarboxylase enzyme activities) as compared to kainate-injected animals (47.5% protection). When a higher concentration of NBQX was tested (40 nmol) the protection against kainate improved to 65% while that against AMPA remained constant (64% protection).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Biomarkers; Choline O-Acetyltransferase; Corpus Striatum; Glutamate Decarboxylase; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Nerve Tissue Proteins; Quinoxalines; Rats; Rats, Wistar; Receptors, Glutamate | 1994 |
NBQX, a competitive non-NMDA receptor antagonist, reduces degeneration due to focal spinal cord ischemia.
We have used the laser-induced photochemical thrombosis model in adult rats to evaluate the significance of the non-N-methyl-D-aspartate (non-NMDA) subtype of glutamate receptors in situations of focal spinal cord ischemia. The animals were pretreated with the selective non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX) or, for comparison, the NMDA antagonist (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-10-imine (MK-801). Neurological function was quantified using evaluations of motor score and inclined plane. The MK-801-treated rats had higher motor scores during the 3-week observation period while NBQX-treated rats only performed significantly better at 1 week. Both treatments caused significantly better performance in the inclined plane test. NBQX and MK-801 reduced the volume of necrosis by approximately 47% at 3 weeks postlesion. We conclude that blockade of both NMDA and non-NMDA subtypes of glutamate receptors reduces ischemic necrosis, possibly by preventing excessive stimulation of these receptors by released excitatory amino acids in the lesion area. Topics: Analysis of Variance; Animals; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Female; Ischemia; Lasers; Nerve Degeneration; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Reference Values; Spinal Cord; Time Factors | 1994 |
Hippocampal damage produced in rats by alpha-dendrotoxin--a selective K+ channel blocker--involves non-NMDA receptor activation.
The epileptogenic and neurodegenerative effects induced by intra-hippocampal injection of a selective K+ channel inhibitor, alpha-dendrotoxin (DTx), were investigated in normal rats and those bearing a monolateral surgical lesion of the Schaffer collaterals that causes degeneration of their nerve terminals and also, isolates the CA3 area. In addition, these effects have also been studied in rats pretreated with NBQX, an AMPA receptor antagonist. Injection of DTx (35 pmol) into one dorsal hippocampus induced motor and electrocortical (ECoG) seizures in all the treated animals that were rapid in onset (within 2-3 min). The seizures were accompanied at 24 h by significant neuronal cell loss which occurred in the CA1, CA3 and CA4 pyramidal cell layers of the hippocampus, ipsilateral to the side of injection. This neuronal loss was paralleled by a significant decrease in the density of radioiodinated DTx labelled acceptors. Lesioning of the excitatory afferents to the CA1 pyramidal cells, gave a substantial reduction in the density of radioiodinated DTx labelled acceptors in the strata oriens and radiatum, revealing that a proportion of these K+ channels are present on the Schaffer collateral terminals. Under these conditions, motor and ECoG seizures persisted. As expected, the lesion prevented loss of the isolated CA3 pyramids, normally produced by the administration of DTx, leaving unaffected CA1 and CA4 pyramidal cell damage, consistent with an observed diminution of DTx binding sites in the latter areas. In unlesioned rats pre-treated with NBQX (30 mg/kg i.p.), subsequent injection of DTx evoked epileptogenic effects after a latency of 15 min and caused significant cell loss in the CA1 but not in the CA3 and CA4 pyramidal cell layers, ipsilateral to the side of toxin injection. A lower dose of NBQX (15 mg/kg i.p.) proved ineffective. In conclusion, these data together with our published results on NMDA antagonists indicate that motor and ECoG seizures and CA1 pyramidal cell loss elicited by intra-hippocampal injection of the K+ channel blocker, DTx, are independent from mechanisms involving glutamate-mediated excitotoxicity whereas CA3 and CA4 pyramidal cell loss may be the consequence of excessive activation of AMPA receptors. Topics: Animals; Elapid Venoms; Electroencephalography; Hippocampus; Male; Nerve Degeneration; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Seizures | 1994 |
Neuronal damage induced by beta-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline.
The neurotoxin beta-N-oxalylamino-L-alanine (BOAA), found in Lathyrus sativus seeds, is thought to be the causative agent of neurolathyrism. We have investigated the in vivo mechanism of action of BOAA by focal injection (1 microliter) in the dorsal hippocampus of male Wistar rats and comparing the pathological outcome with the effects of injections (1 microliter) of alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA), kainate (KA) or N-methyl-D-aspartate (NMDA). Cellular damage induced by the excitatory amino acids in the pyramidal (CA1-CA4) and dentate granule neurones (DG) was assessed histologically 24 h after the injection. The study shows that BOAA (50 nmol) induces hippocampal toxicity with a highly selective pattern of regional cellular damage. The CA1, CA4 and DG subfields show 70-90% neuronal injury whereas CA2 and CA3 show only minimal damage. This pattern of cellular damage is similar to that induced by AMPA (1 nmol) and NMDA (25 nmol) but not KA (0.5 nmol). BOAA-induced neurotoxicity is prevented in a dose-dependent manner by focal co-injection of the non-NMDA receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline (NBQX) (1-25 nmol) but not by a dose of MK-801 (3 mg/kg i.p.) which is neuroprotective against an injection of NMDA. Delayed focal injections of NBQX (25 nmol) up to 2 h after the BOAA injection result in a significant protection of all pyramidal and granular cell regions. These results indicate that the in vivo hippocampal toxicity of BOAA is mediated by AMPA receptors rather than by KA or NMDA receptors.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Diamino; Animals; beta-Alanine; Dizocilpine Maleate; Dose-Response Relationship, Drug; Hippocampus; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Neurons; Quinoxalines; Rats; Rats, Wistar | 1993 |
Cysteine sulphinate and cysteate: mediators of cysteine toxicity in the neonatal rat brain?
Excitotoxic amino acids contain two acidic groups, but cysteine represents an exception to this rule. The hypothesis that cysteine toxicity is mediated by the oxidized and diacidic metabolites cysteine sulphinate and/or cysteate was tested in the present study. The issue was approached in three different ways. Firstly, the distribution of brain injury after subcutaneous administration of cysteine (1 mg/g) to 4-day-old rats was compared with that caused by cysteine sulphinate (3 mg/g). Secondly, the effects of excitatory amino acid receptor antagonists on cysteine and cysteine sulphinate toxicity were investigated. Thirdly, the cerebral concentrations of cysteine sulphinate were determined after cysteine administration and compared with those obtained after cysteine sulphinate injection. The cerebral cortex was the region most vulnerable to cysteine toxicity, followed by the hippocampus (especially the medial subicular neurons), amygdala, caudoputamen, cerebellum and septum. Pronounced extravasation of red blood cells was observed in lesioned areas. One day after cysteine administration, the injury was infarction-like and sharply demarcated. Cysteine sulphinate-induced damage resembled cysteine-induced lesions in some respects: the anterior cingulate and retrosplenial cortices, as well as medial subicular cells, were quite vulnerable. However, the differences prevailed. Cysteine sulphinate, but not cysteine, killed neurons of the superficial part of the tectum, the medial habenula, the ventromedial hypothalamus and the arcuate nucleus. Further, while cysteine toxicity was prominent in deep cortical layers, cysteine sulphinate preferentially damaged superficial cortical neurons. Cysteine toxicity was abolished by pretreatment with MK-801, a selective NMDA antagonist, but not by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, a selective AMPA receptor blocker. In contrast, the considerably smaller lesion seen after cysteine sulphinate administration was only partially prevented by MK-801. Large (19-fold) increases in cortical cysteine sulphinate concentration were noted after injection of a toxic dose of cysteine. This corresponds to 90 nmol cysteine sulphinate/g protein. The cysteate concentration was not increased above the detection limit. Injection of a toxic dose of cysteine sulphinate elevated cysteine sulphinate concentration in the frontomedial cortex (a region consistently injured by cysteine sulphinate) almost three orders of magnitude more Topics: Amino Acids; Animals; Animals, Newborn; Brain; Cerebral Cortex; Cysteic Acid; Cysteine; Dizocilpine Maleate; Female; Male; Nerve Degeneration; Neurons; Neurotoxins; Neurotransmitter Agents; Organ Specificity; Quinoxalines; Rats; Rats, Sprague-Dawley | 1993 |
Protection against ischemic hippocampal CA1 damage in the rat with a new non-NMDA antagonist, NBQX.
Two glutamate antagonists were tested in a rat model of complete, transient cerebral ischemia. Six days after 10 min ischemia the mean loss of hippocampal CA1 pyramidal neurones was 73%. Administration of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) antagonist NBQX (2,3-dihydro-6-nitro-7-sulfamoyl-benzo(F)quinoxaline) reduced the pyramidal neurone loss to 1%, 11% and 15%, when given before, immediately after or 1 h after ischemia, respectively. MK-801 (dizocilpine), a competitive NMDA antagonist gave no protection in this model. We suggest that the AMPA receptor transduction mechanisms are sensitized by ischemia and that the postischemic blockade of the main glutamatergic input to the CA1 cells with NBQX impairs the deleterious effect of "normal" postischemic excitatory transmission. Topics: Animals; Brain Damage, Chronic; Brain Ischemia; Cell Count; Hippocampus; Male; Nerve Degeneration; Neurons; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1992 |
Non-NMDA antagonists protect against kainate more than AMPA toxicity in the rat hippocampus.
Single focal injection of the excitatory amino acids (EAAs) kainic acid (KA, 1.1 nmol/microliters) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (S)-AMPA, 6 nmol/microliters) into rat dorsal hippocampus resulted in widespread neurodegeneration with 90-100% loss of hippocampal pyramidal cells in CA1, CA2, CA3 and CA4 subfields, and 50-70% loss of dentate granule (DG) cells. Focal injection of NMDA (30 nmol/microliters) under the same conditions resulted in 70-90% loss of CA1 cells with less damage in CA2, CA3, CA4 and DG cells (30-50%, 10-30%, and 30-50%, respectively). The non-NMDA antagonists NBQX (2,3-dihydro-6-nitro-7-sulphamoyl-benzo(f) quinoxaline) and GYKI 52466 (1-(amino)phenyl-4-methyl-7,8-methylendioxy-5H-2,3,benzodiazepine. HCl) co-injected (24 nmol/microliters) with EAAs or given as i.v. infusion (30 mg/kg/3h), protected against KA toxicity in CA1, CA2 and DG cells, with no protection in CA3 and CA4. NBQX i.v. protected against (S)-AMPA toxicity in the DG cells but no protection was observed against (S)-AMPA toxicity in hippocampal subfields (CA1, CA2 and CA4). Intravenous administration of NBQX and GYKI 52466 (30 mg/kg/3 h) also failed to protect against NMDA toxicity in the hippocampus. Systemic injections of D(-)-CPPene, (E)-4-(3-phos-phonoprop-2-enyl)-piperazine-2-carboxylic acid, (10 and 5 mg/kg, i.p., 20 min prior and 3 h post EAA injection) protected against NMDA and KA toxicity in the CA1, CA2 and DG subfield with no protective effect against (S)-AMPA toxicity. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Anti-Anxiety Agents; Benzodiazepines; Hippocampus; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Nerve Degeneration; Neurons; Neurotoxins; Pyramidal Tracts; Quinoxalines; Rats; Rats, Inbred Strains | 1991 |