2-3-5-(triglutathion-s-yl)hydroquinone and Kidney-Neoplasms

2-3-5-(triglutathion-s-yl)hydroquinone has been researched along with Kidney-Neoplasms* in 9 studies

Reviews

1 review(s) available for 2-3-5-(triglutathion-s-yl)hydroquinone and Kidney-Neoplasms

ArticleYear
Mutagenicity and carcinogenicity of biological reactive intermediate's derived from a "non-genotoxic" carcinogen.
    Advances in experimental medicine and biology, 2001, Volume: 500

    Topics: Animals; Carcinogens; Carcinoma, Renal Cell; Cell Division; Cell Transformation, Neoplastic; Glutathione; Humans; Hydroquinones; Kidney; Kidney Neoplasms; Loss of Heterozygosity; Mutagens; Repressor Proteins; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2001

Other Studies

8 other study(ies) available for 2-3-5-(triglutathion-s-yl)hydroquinone and Kidney-Neoplasms

ArticleYear
Transcriptional and post-translational modifications of B-Raf in quinol-thioether induced tuberous sclerosis renal cell carcinoma.
    Molecular carcinogenesis, 2016, Volume: 55, Issue:8

    Increased activity of B-Raf has been identified in approximately 7% of human cancers. Treatment of Eker rats (Tsc-2(EK/+) ), bearing a mutation in one allele of the tuberous sclerosis-2 (Tsc-2) gene, with the nephrocarcinogen 2,3,5-tris-(glutathion-S-yl) hydroquinone (TGHQ) results in loss of the wild-type allele of Tsc-2 in renal preneoplastic lesions and tumors. These tumors have increased protein expression of B-Raf, C-Raf (Raf-1), and increased expression and activity of ERK kinase. Similar changes are observed in Raf kinases following TGHQ-mediated transformation of primary renal epithelial cells derived from Tsc-2(EK/+) rats (QTRRE cells), cells that are also null for tuberin. Herein, we utilized LC-MS/MS to identify constitutive phosphorylation of S345 and S483 in both 100- and 95-kDa forms of B-Raf in QTRRE cells. Using microRotofor liquid-phase isoelectric focusing, we identified four fractions of B-Raf that contain different post-translational modification profiles in QTRRE cells. Amplification of the kinase domain of B-Raf from QTRRE cells, outer-stripe of the outer medulla of 8-month TGHQ- or vehicle-treated Tsc-2(+/+) and Tsc-2(EK/+) rats, as well as tumors excised from 8-month TGHQ-treated Tsc-2(EK/+) rats revealed three splice variants of B-Raf within the kinase domain. These splice variants differed by approximately 340, 544, and 600 bp; confirmed by sequencing. No point mutations within the kinase domain of B-Raf were identified. In addition, B-Raf/Raf-1/14-3-3 complex formation in the QTRRE cells was decreased by sorafenib, with concomitant selective decreases in p-ERK levels. Transcriptional and post-translational characterization of critical kinases, such as B-Raf, may contribute to the progression of tuberous sclerosis RCC. (246/250) © 2015 Wiley Periodicals, Inc.

    Topics: Animals; Carcinoma, Renal Cell; Cell Line; Cell Transformation, Neoplastic; Glutathione; Humans; Hydroquinones; Kidney Neoplasms; Male; Neoplasms, Experimental; Phosphorylation; Protein Domains; Protein Processing, Post-Translational; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-raf; Rats; RNA Splicing; Tuberous Sclerosis; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2016
cAMP-dependent cytosolic mislocalization of p27(kip)-cyclin D1 during quinol-thioether-induced tuberous sclerosis renal cell carcinoma.
    Toxicological sciences : an official journal of the Society of Toxicology, 2011, Volume: 122, Issue:2

    The loss of tuberin, the tuberous sclerosis-2 (Tsc-2) gene product, is associated with cytoplasmic mislocalization of p27 in uterine leiomyomas derived from Eker rats (Tsc-2(EK/+)) and in human metastatic renal cell carcinoma tissue. Signaling associated with cytoplasmic mislocalization of p27 in renal cancer is relatively unknown. Renal tumors derived from 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ)-treated Tsc-2(EK/+) rats, and null for tuberin, display elevated nuclear and cytosolic p27, with parallel increases in cytosolic cyclin D1 levels. Similar changes are observed in TGHQ-transformed renal epithelial cells derived from Tsc-2(EK/+) rats (QTRRE cells), which, in addition to the cytoplasmic mislocalization of p27 and cyclin D1, exhibit high ERK, B-Raf, and Raf-1 kinase activity. Renal tumor xenografts, derived from subcutaneous injection of QTRRE cells into nude mice, also display increases in cytosolic mislocalization of p27 and cyclin D1. Dibutyryl cAMP and/or phosphodiesterase inhibitors (PIs; pentoxifylline or theophylline) increase Rap1B activation, B-Raf kinase activity, and cytosolic p27/cyclin D1 protein levels in QTRRE cells. Inhibition of Raf kinases with either sorafenib or B-Raf small interfering RNA (siRNA) caused a mitogen-activated protein kinase-mediated downregulation of p27. Moreover, decreases in cyclin D1 were also associated with p27 siRNA knockdown in QTRRE cells. Finally, theophylline-mediated increases in p27 and cyclin D1 were attenuated by sorafenib, which modulated Raf/MEK/ERK signaling. Collectively, these data suggest that the cAMP/Rap1B/B-Raf pathway modulates the expression of p27 and the cytoplasmic mislocalization of p27-cyclin D1 in tuberous sclerosis gene-regulated-renal cancer. Therefore, the loss of tuberin and engagement of the cAMP pathway may independently direct p27-cyclin D1 cytosolic stabilization during renal tumor formation.

    Topics: Animals; Benzenesulfonates; Bucladesine; Carcinoma, Renal Cell; Cell Line; Cyclin D1; Cyclin-Dependent Kinase Inhibitor p27; Cytosol; Down-Regulation; Female; Gene Expression Regulation, Neoplastic; Glutathione; Humans; Hydroquinones; Kidney Neoplasms; Male; Mice; Mice, Nude; Mitogen-Activated Protein Kinases; Niacinamide; Pentoxifylline; Phenylurea Compounds; Phosphodiesterase Inhibitors; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-raf; Pyridines; Rats; RNA, Small Interfering; Signal Transduction; Sorafenib; Theophylline; Tuberous Sclerosis; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2011
ERK crosstalks with 4EBP1 to activate cyclin D1 translation during quinol-thioether-induced tuberous sclerosis renal cell carcinoma.
    Toxicological sciences : an official journal of the Society of Toxicology, 2011, Volume: 124, Issue:1

    The mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase signaling cascades have been implicated in a number of human cancers. The tumor suppressor gene tuberous sclerosis-2 (Tsc-2) functions as a negative regulator of mTOR. Critical proteins in both pathways are activated following treatment of Eker rats (Tsc-2(EK/+)) with the nephrocarcinogen 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ), which also results in loss of the wild-type allele of Tsc-2 in renal preneoplastic lesions and tumors. Western blot analysis of kidney tumors formed following treatment of Tsc-2(EK/+) rats with TGHQ for 8 months revealed increases in B-Raf, Raf-1, pERK, cyclin D1, 4EBP1, and p-4EBP1-Ser65, -Thr70, and -Thr37/46 expression. Similar changes are observed following TGHQ-mediated transformation of primary renal epithelial cells derived from Tsc-2(EK/+) rats (quinol-thioether rat renal epithelial [QTRRE] cells) that are also null for tuberin. These cells exhibit high ERK, B-Raf, and Raf-1 kinase activity and increased expression of all p-4EBP1s and cyclin D1. Treatment of the QTRRE cells with the Raf kinase inhibitor, sorafenib, or the MEK1/2 kinase inhibitor, PD 98059, produced a significant decrease in the protein expression of all p-4EBP1s and cyclin D1. Following siRNA knockdown of Raf-1, Western blot analysis revealed a significant decrease in Raf-1, cyclin D1, and all p-4EBP1 forms noted above. In contrast, siRNA knockdown of B-Raf resulted in a nominal change in these proteins. The data indicate that Raf-1/MEK/ERK participates in crosstalk with 4EBP1, which represents a novel pathway interaction leading to increased protein synthesis, cell growth, and kidney tumor formation.

    Topics: Animals; Carcinoma, Renal Cell; Carrier Proteins; Cell Culture Techniques; Cell Line; Cell Transformation, Neoplastic; Cyclin D1; Epithelial Cells; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation, Neoplastic; Glutathione; Humans; Hydroquinones; Immunohistochemistry; Intracellular Signaling Peptides and Proteins; Kidney Neoplasms; Loss of Heterozygosity; Male; MAP Kinase Kinase Kinases; Phosphoproteins; Protein Biosynthesis; Proto-Oncogene Proteins B-raf; Proto-Oncogene Proteins c-raf; Rats; Rats, Mutant Strains; Receptor Cross-Talk; RNA, Small Interfering; Signal Transduction; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2011
Changes in gene expression during chemical-induced nephrocarcinogenicity in the Eker rat.
    Molecular carcinogenesis, 2003, Volume: 38, Issue:3

    Hydroquinone (HQ) is a rodent carcinogen and a potential human carcinogen. Glutathione conjugation of HQ enhances its biological reactivity, and 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ) is a potent nephrotoxicant and nephrocarcinogen in the Eker rat. Moreover, a single exposure of primary epithelial cells derived from Eker rat kidneys to TGHQ transforms these cells into an immortalized phenotype (quinol-thioether transformed rat renal epithelial (QT-RRE) cells). The Eker rat bears a mutation in one allele of the tuberous sclerosis-2 (Tsc-2) tumor suppressor gene, which predisposes the animals to the development of spontaneous and chemical-induced renal cell carcinoma. Thus, the Eker rat provides a unique model for elucidating the mechanisms of renal tubular epithelial carcinogeneisis. cDNA microarray analysis of QT-RRE3 cells and of tumor tissue derived from the kidneys of Eker rats treated with TGHQ revealed alterations (by threefold or greater) in the expression of a total of 80 genes. Fifteen percent of these genes exhibited similar expression patterns in both QT-RRE cells and tumor tissue. The differentially expressed genes primarily participate in three major areas: (1) signal transduction or in the regulation of signal transduction (extracellular signal regulated kinase 2 (ERK2); protein kinase CK2; protein kinase B; c-jun; NF-kappaB; ras-related GTPases; annexins), (2) stress response, tissue remodeling, and DNA repair (glutathione-S-transferases; procollagen c proteinase enhancer; plasminogen activator; tissue inhibitor of metalloprotease 3; apurinic/apyrimidic endonuclease), and (3) electron transport and energy homeostasis (cytochrome c oxidase subunits). The changes in the expression of many of these genes was confirmed by reverse transcription (RT)-polymerase chain reactions (PCR) using primers specific for the differentially expressed genes. As an example, the annexin I and II genes, implicated in signal transduction, were highly induced in tumor tissue and also in dysplastic lesions isolated from the kidneys of rats treated chronically with TGHQ. The annexin I and II proteins were also upregulated in tumor tissue, which probably play an important role in TGHQ-induced nephrocarcinogenesis. Moreover, in the present study, a tumorigenicity assay using athymic nude mice revealed that QT-RRE cell lines formed tumors when injected in the subcutis of nude mice, providing evidence that the cells are malignantly transformed. Histopathological

    Topics: Animals; Blotting, Western; Carcinoma, Renal Cell; Cell Division; Epithelial Cells; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Glutathione; Hydroquinones; Kidney; Kidney Neoplasms; Neoplasm Proteins; Oligonucleotide Array Sequence Analysis; Polymerase Chain Reaction; Rats; Rats, Mutant Strains

2003
Cell proliferation is insufficient, but loss of tuberin is necessary, for chemically induced nephrocarcinogenicity.
    American journal of physiology. Renal physiology, 2002, Volume: 283, Issue:2

    Although 2,3,5-tris-(glutathion-S-yl)hydroquinone (TGHQ; 2.5 micromol/kg ip) markedly increased cell proliferation within the outer stripe of the outer medulla (OSOM) of the kidney in both wild-type (Tsc2(+/+)) and mutant Eker rats (Tsc2(EK/+)), only TGHQ-treated Tsc2(EK/+) rats developed renal tumors, indicating that cell proliferation per se was not sufficient for tumor development. Tuberin expression was initially induced within the OSOM after TGHQ treatment but was lost within TGHQ-induced renal tumors. High extracellular signal-regulated kinase (ERK) activity occurred in the OSOM of Tsc2(EK/+) rats at 4 mo and in TGHQ-induced renal tumors. Cyclin D1 was also highly expressed in TGHQ-induced renal tumors. Reexpression of Tsc2 in tuberin-negative cells decreased ERK activity, consistent with the growth-suppressive effects of this tumor suppressor gene. Thus 1) stimulation of cell proliferation after toxicant insult is insufficient for tumor formation; 2) tuberin induction after acute tissue injury suggests that Tsc2 is an acute-phase response gene, limiting the proliferative response after injury; and 3) loss of Tsc2 gene function is associated with cell cycle deregulation.

    Topics: Animals; Cell Division; Cyclin D1; Gene Expression Regulation, Neoplastic; Glutathione; Hydroquinones; Kidney Neoplasms; Male; Mitogen-Activated Protein Kinases; Rats; Rats, Mutant Strains; Repressor Proteins; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2002
Carcinogenicity of a nephrotoxic metabolite of the "nongenotoxic" carcinogen hydroquinone.
    Chemical research in toxicology, 2001, Volume: 14, Issue:1

    Hydroquinone (HQ) is a potential human carcinogen to which many people are exposed. HQ generally tests negative in standard mutagenicity assays, making it a "nongenotoxic" carcinogen whose mechanism of action remains unknown. HQ is metabolized to 2,3,5-tris(glutathion-S-yl)HQ (TGHQ), a potent toxic and redox active compound. To determine if TGHQ is a carcinogen in the kidney, TGHQ was administered to Eker rats (2 months of age) for 4 or 10 months. Eker rats carry a germline mutation in the tuberous sclerosis 2 (Tsc-2) tumor suppressor gene, which makes them highly susceptible to the development of renal tumors. As early as 4 months after the initiation of treatment (2.5 micromol/kg, i.p.), TGHQ-treated rats developed numerous toxic tubular dysplasias of a form rarely present in vehicle-treated rats. These preneoplastic lesions are believed to represent early transformation within tubules undergoing regeneration after injury by TGHQ, and adenomas subsequently arose within these lesions. After treatment for 10 months (2.5 micromol/kg for 4 months followed by 3.5 micromol/kg for 6 months), there were 6-, 7-, and 10-fold more basophilic dysplasias, adenomas, and renal cell carcinomas, respectively, in TGHQ-treated animals than in controls. Most of these lesions were in the region of TGHQ-induced acute renal injury, the outer stripe of the outer medulla. Loss of heterozygosity (LOH) at the Tsc-2 locus was demonstrated in both the toxic tubular dysplasias and tumors from rats treated with TGHQ for 10 months, consistent with TGHQ-induced loss of tumor suppressor function of the Tsc-2 gene. Thus, although HQ is generally considered a nongenotoxic carcinogen, our data suggest that HQ nephrocarcinogenesis is probably mediated by the formation of the quantitatively minor yet potent nephrotoxic metabolite TGHQ, which induces sustained regenerative hyperplasia, loss of tumor suppressor gene function, and the subsequent formation of renal adenomas and carcinomas. In addition, our data demonstrate that assumptions regarding mechanisms of action of nongenotoxic carcinogens should be considered carefully in the absence of data on the profiles of metabolites generated by these compounds in specific target organs for tumor induction.

    Topics: Animals; Biotransformation; Carcinogens; Cell Division; Genes, Tumor Suppressor; Germ-Line Mutation; Glutathione; Hydroquinones; Kidney; Kidney Neoplasms; Loss of Heterozygosity; Male; Polymerase Chain Reaction; Rats; Rats, Mutant Strains; Repressor Proteins; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2001
Transformation of kidney epithelial cells by a quinol thioether via inactivation of the tuberous sclerosis-2 tumor suppressor gene.
    Molecular carcinogenesis, 2001, Volume: 31, Issue:1

    Although hydroquinone (HQ) is a rodent carcinogen, because of its lack of mutagenicity in standard bacterial mutagenicity assays it is generally considered a nongenotoxic carcinogen. 2,3,5-Tris-(glutathion-S-yl)HQ (TGHQ) is a potent nephrotoxic metabolite of HQ that may play an important role in HQ-mediated nephrocarcinogenicity. TGHQ mediates cell injury by generating reactive oxygen species and covalently binding to tissue macromolecules. We determined the ability of HQ and TGHQ to induce cell transformation in primary renal epithelial cells derived from the Eker rat. Eker rats possess a germline inactivation of one allele of the tuberous sclerosis-2 (Tsc-2) tumor suppressor gene that predisposes the animals to renal cell carcinoma. Treatment of primary Eker rat renal epithelial cells with HQ (25 and 50 microM) or TGHQ (100 and 300 microM) induced 2- to 4-fold and 6- to 20-fold increases in cell transformation, respectively. Subsequently, three cell lines (The QT-RRE 1, 2, and 3) were established from TGHQ-induced transformed colonies. The QT-RRE cell lines exhibited a broad range of numerical cytogenetic alterations, loss of heterozygosity at the Tsc-2 gene locus, and loss of expression of tuberin, the protein encoded by the Tsc-2 gene. Only heterozygous (Tsc-2(EK/+)) kidney epithelial cells were susceptible to transformation by HQ and TGHQ, as wild-type cells (Tsc-2(+/+)) showed no increase in transformation frequency over background levels following chemical exposure. These data indicate that TGHQ and HQ are capable of directly transforming rat renal epithelial cells and that the Tsc-2 tumor suppressor gene is an important target of TGHQ-mediated renal epithelial cell transformation.

    Topics: Animals; Blotting, Western; Carcinoma, Renal Cell; Cell Division; Cell Transformation, Neoplastic; Cytogenetic Analysis; DNA Primers; Epithelial Cells; Gene Silencing; Genes, Tumor Suppressor; Glutathione; Hydroquinones; Kidney; Kidney Neoplasms; Polymerase Chain Reaction; Rats; Rats, Mutant Strains; Repressor Proteins; Tuberous Sclerosis Complex 2 Protein; Tumor Suppressor Proteins

2001
Cytotoxicity and cell-proliferation induced by the nephrocarcinogen hydroquinone and its nephrotoxic metabolite 2,3,5-(tris-glutathion-S-yl)hydroquinone.
    Carcinogenesis, 1997, Volume: 18, Issue:12

    Hydroquinone, an intermediate used in the chemical industry and a metabolite of benzene, is a nephrocarcinogen in the 2-year National Toxicology Program bioassay in male Fischer 344 rats. Current evidence suggests that certain chemicals may induce carcinogenesis by a mechanism involving cytotoxicity, followed by sustained regenerative hyperplasia and ultimately tumor formation. Glutathione (GSH) conjugates of a variety of hydroquinones are potent nephrotoxicants, and we now report on the effect of hydroquinone and 2,3,5-(tris-glutathion-S-yl)hydroquinone, on site-selective cytotoxicity and cell proliferation in rat kidney. Male Fischer 344 rats (160-200 g) were treated with hydroquinone (1.8 mmol/kg or 4.5 mmol/kg, p.o.) or 2,3,5-(tris-glutathion-S-yl)hydroquinone (7.5 micromol/kg; 1.2-1.5 micromol/rat, i.v.), and blood urea nitrogen (BUN), urinary gamma-glutamyl transpeptidase (gamma-GT), alkaline phosphatase (ALP), glutathione-S-transferase (GST) and glucose were measured as indices of nephrotoxicity. Hydroquinone (1.8 mmol/kg, p.o.) is nephrotoxic in some rats, but not others, but cell proliferation (BrDU incorporation) in proximal tubular cells of the S3M region correlates with the degree of toxicity in individual rats. At 4.5 mmol/kg, hydroquinone causes significant increases in the urinary excretion of gamma-GT, ALP and GST. Pretreatment of rats with acivicin prevents hydroquinone-mediated nephrotoxicity, indicating that toxicity is dependent on the formation of metabolites that require processing by gamma-GT. Consistent with this view, 2,3,5-(tris-glutathion-S-yl)hydroquinone, a metabolite of hydroquinone, causes increases in BUN, urinary gamma-GT and ALP, all of which are maximal 12 h after administration of 2,3,5-(tris-glutathion-S-yl)hydroquinone. In contrast, the maximal excretion of GST and glucose occurs after 24 h. By 72 h, BUN and glucose concentrations return to control levels, while gamma-GT, ALP and GST remain slightly elevated. Examination of kidney slices by light microscopy revealed the presence of tubular necrosis in the S3M segment of the proximal tubule, extending into the medullary rays. Cell proliferation rates in this region were 2.4, 6.9, 15.3 and 14.3% after 12, 24, 48 and 72 h, respectively, compared to 0.8-2.4% in vehicle controls. Together with the metabolic data, the results indicate a role for hydroquinone-thioether metabolites in hydroquinone toxicity and carcinogenicity.

    Topics: Animals; Carcinogens; Cell Division; Cell Survival; gamma-Glutamyltransferase; Glutathione; Hydroquinones; Isoxazoles; Kidney; Kidney Diseases; Kidney Neoplasms; Male; Rats; Rats, Inbred F344

1997