2-2-bis(hydroxymethyl)-1-azabicyclo(2-2-2-)octan-3-one and Adenocarcinoma

2-2-bis(hydroxymethyl)-1-azabicyclo(2-2-2-)octan-3-one has been researched along with Adenocarcinoma* in 2 studies

Other Studies

2 other study(ies) available for 2-2-bis(hydroxymethyl)-1-azabicyclo(2-2-2-)octan-3-one and Adenocarcinoma

ArticleYear
Chemopreventive effects of the p53-modulating agents CP-31398 and Prima-1 in tobacco carcinogen-induced lung tumorigenesis in A/J mice.
    Neoplasia (New York, N.Y.), 2013, Volume: 15, Issue:9

    Lung cancer is the leading cause of cancer deaths worldwide. Expression of the p53 tumor suppressor protein is frequently altered in tobacco-associated lung cancers. We studied chemopreventive effects of p53-modulating agents, namely, CP-31398 and Prima-1, on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung adenoma and adenocarcinoma formation in female A/J mice. Seven-week-old mice were treated with a single dose of NNK (10 µmol/mouse) by intraperitoneal injection and, 3 weeks later, were randomized to mice fed a control diet or experimental diets containing 50 or 100 ppm CP-31398 or 150 or 300 ppm Prima-1 for either 17 weeks (10 mice/group) or 34 weeks (15 mice/group) to assess the efficacy against lung adenoma and adenocarcinoma. Dietary feeding of 50 or 100 ppm CP-31398 significantly suppressed (P < .0001) lung adenocarcinoma by 64% and 73%, respectively, after 17 weeks and by 47% and 56%, respectively, after 34 weeks. Similarly, 150 or 300 ppm Prima-1 significantly suppressed (P < .0001) lung adenocarcinoma formation by 56% and 62%, respectively, after 17 weeks and 39% and 56%, respectively, after 34 weeks. Importantly, these results suggest that both p53 modulators cause a delay in the progression of adenoma to adenocarcinoma. Immunohistochemical analysis of lung tumors from mice exposed to p53-modulating agents showed a significantly reduced tumor cell proliferation and increased accumulation of wild-type p53 in the nucleus. An increase in p21- and apoptotic-positive cells was also observed in lung tumors of mice exposed to p53-modulating agents. These results support a chemopreventive role of p53-modulating agents in tobacco carcinogen-induced lung adenocarcinoma formation.

    Topics: Adenocarcinoma; Animals; Anticarcinogenic Agents; Apoptosis; Aza Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cell Transformation, Neoplastic; Chemoprevention; Cyclin-Dependent Kinase Inhibitor p21; Female; Lung Neoplasms; Mice; Mice, Inbred A; Nicotiana; Nitrosamines; Pyrimidines; Random Allocation; Tumor Suppressor Protein p53

2013
PRIMA-1(MET) synergizes with cisplatin to induce tumor cell apoptosis.
    Oncogene, 2005, May-12, Volume: 24, Issue:21

    Mutant p53-carrying tumors are often more resistant to chemotherapeutical drugs. We demonstrate here that the mutant p53-reactivating compound PRIMA-1(MET) acts synergistically with several chemotherapeutic drugs to inhibit tumor cell growth. Combined treatment with cisplatin and PRIMA-1(MET) resulted in a synergistic induction of tumor cell apoptosis and inhibition of human tumor xenograft growth in vivo in SCID mice. The induction of mutant p53 levels by chemotherapeutic drugs is likely to increase the sensitivity of tumor cells to PRIMA-1(MET). Thus, the combination of PRIMA-1(MET) with currently used chemotherapeutic drugs may represent a novel and more efficient therapeutic strategy for treatment of mutant p53-carrying tumors.

    Topics: Adenocarcinoma; Animals; Apoptosis; Aza Compounds; Bone Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Carcinoma, Non-Small-Cell Lung; Cisplatin; Drug Interactions; Drug Resistance, Neoplasm; Genes, p53; Humans; Lung Neoplasms; Mice; Mice, SCID; Mutation; Osteosarcoma; Quinuclidines; Transplantation, Heterologous; Tumor Cells, Cultured

2005