2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid has been researched along with Edema* in 17 studies
17 other study(ies) available for 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and Edema
Article | Year |
---|---|
Antioxidant, anti-inflammatory and analgesic activity of Mimosa acutistipula (Mart.) Benth.
Medicinal plants belonging to the genus Mimosa, such as Mimosa tenuiflora, M. caesalpinifolia, and M. verrucosa are known for their popular use for asthma, bronchitis and fever. Ethnopharmacological studies report that Mimosa acutistipula is used to treat alopecia and pharyngitis, conditions that can be related to oxidative stress, inflammatory processes and painful limitations. However, there is no studies on its efficacy and mechanism of action.. To elucidate the antioxidant, anti-inflammatory, analgesic and antipyretic activity of M. acutistipula leaves.. Phytochemical profile of M. acutistipula extracts was evaluated by several reaction-specific methods. Secondary metabolites such as tannins, phenols and flavonoids were quantified with colorimetric assays. In vitro antioxidant potential was evaluated using DPPH and ABTS + as free radical scavenging tests, FRAP and phosphomolybdenum as oxide-reduction assays, and anti-hemolytic for lipid peroxidation evaluation. In vivo anti-inflammatory evaluation was performed by paw edema, and peritonitis induced by carrageenan. Analgesic effect and its possible mechanisms were determined by acetic acid-induced abdominal writhing and the formalin test. Antipyretic activity was evaluated by yeast-induced fever.. M. acutistipula leaves ethyl acetate extract showed expressive concentrations of phenolic compounds and antioxidant activity. It also exhibited anti-inflammatory and analgesic activity, besides its antipyretic effect. Thus, these results provide information regarding its popular use and might help future therapeutics involving this specimen. Topics: Analgesics; Anti-Inflammatory Agents; Antioxidants; Antipyretics; Edema; Flavonoids; Methanol; Mimosa; Pain; Peritonitis; Phenols; Plant Extracts; Tannins | 2023 |
Antioxidant and anti-inflammatory effect of Asphodelus microcarpus methanolic extracts.
Asphodelus microcarpus is an important medicinal plant belonging to family Liliaceae. This plant is used in traditional medicine to treat abscesses by local application of the powder; the roots are used against white spots, and specifically used for ear pain.. The aim of the present study was to assess the in vitro antioxidant effects and the in vivo anti-inflammatory activity of the different parts methanolic extracts of the Asphodelus microcarpus: aerial part (APME), leaf (LME), stem flowers (SFME) and root (RME).. The antioxidant potency of extracts was evaluated by DPPH (2, 2-diphenyl-l-picrylhydrazyl), ABTS, β-carotene bleaching assays, iron chelating, free hydroxyl radicals (HO. The estimation of polyphenols and flavonoids showed that the leave methanolic extract contains a high amount of polyphenols and flavonoids: 755.3 ± 0.036 mg Gallic acid equivalent and 42.2 ± 0.043 mg Rutin equivalent/g of dried material, respectively. Oral administration of the APME and RME extract produced significant (p < 0.05) anti-edematogenic effect with a dose of 500 mg/kg in the carrageenan induced paw edema after 6 h (58.04%, 58.75%, respectively). APME, LME; SFME and RME extracts at 100, 300 and 500 mg/kg, exhibited significant (p < 0.05) inhibition of xylene induced ear edema.. the present study confirms the use of A. microcarpus in traditional medicine as anti-inflammatory agent. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; beta Carotene; Biphenyl Compounds; Carrageenan; Edema; Female; Hydroxyl Radical; Iron; Liliaceae; Mice; Phytotherapy; Picrates; Plant Components, Aerial; Plant Extracts; Rats, Wistar; Sulfonic Acids; Xylenes | 2019 |
Wound healing and anti-inflammatory activity of some Ononis taxons.
Topics: Analgesics; Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Edema; Hydroxides; Inflammation; Male; Methanol; Mice; Ononis; Phytotherapy; Picrates; Plant Extracts; Plant Roots; Rats; Rats, Sprague-Dawley; Skin; Sulfonic Acids; Wound Healing | 2017 |
Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of Echinacea purpurea and Echinacea angustifolia extracts.
Echinacea (Asteraceae) is used because of its pharmacological properties. However, there are few studies that integrate phytochemical analyses with pharmacological effects.. Evaluate the chemical profile and biological activity of hydroalcoholic Echinacea extracts.. The difference in the chemical and pharmacological properties among extracts highlights the need to consider strategies and policies for standardization of commercial herbal extracts in order to guarantee the safety and identity of this type of products. Topics: Alloxan; Animals; Anti-Inflammatory Agents; Antineoplastic Agents, Phytogenic; Antioxidants; Benzothiazoles; Biomarkers; Biphenyl Compounds; Blood Glucose; Carrageenan; Cell Proliferation; Diabetes Mellitus, Experimental; Echinacea; Edema; HeLa Cells; Humans; Hypoglycemic Agents; Male; MCF-7 Cells; Neoplasms; Phytochemicals; Phytotherapy; Picrates; Plant Extracts; Plants, Medicinal; Rats, Wistar; Sulfonic Acids; Time Factors | 2017 |
Topical Formulation Containing Naringenin: Efficacy against Ultraviolet B Irradiation-Induced Skin Inflammation and Oxidative Stress in Mice.
Naringenin (NGN) exhibits anti-inflammatory and antioxidant activities, but it remains undetermined its topical actions against ultraviolet B (UVB)-induced inflammation and oxidative stress in vivo. The purpose of this study was to evaluate the physicochemical and functional antioxidant stability of NGN containing formulations, and the effects of selected NGN containing formulation on UVB irradiation-induced skin inflammation and oxidative damage in hairless mice. NGN presented ferric reducing power, ability to scavenge 2,2'-azinobis (3-ethylbenzothiazoline- 6-sulfonic acid) (ABTS) and hydroxyl radical, and inhibited iron-independent and dependent lipid peroxidation. Among the three formulations containing NGN, only the F3 kept its physicochemical and functional stability over 180 days. Topical application of F3 in mice protected from UVB-induced skin damage by inhibiting edema and cytokine production (TNF-α, IL-1β, IL-6, and IL-10). Furthermore, F3 inhibited superoxide anion and lipid hydroperoxides production and maintained ferric reducing and ABTS scavenging abilities, catalase activity, and reduced glutathione levels. In addition, F3 maintained mRNA expression of cellular antioxidants glutathione peroxidase 1, glutathione reductase and transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2), and induced mRNA expression of heme oxygenase-1. In conclusion, a formulation containing NGN may be a promising approach to protecting the skin from the deleterious effects of UVB irradiation. Topics: Administration, Cutaneous; Animals; Antioxidants; Benzothiazoles; Catalase; Edema; Flavanones; Gene Expression; Glutathione; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Glutathione Reductase; Heme Oxygenase-1; Hydroxyl Radical; Inflammation; Interleukin-10; Interleukin-1beta; Interleukin-6; Lipid Peroxidation; Mice; Mice, Hairless; NF-E2-Related Factor 2; Oxidative Stress; Skin; Sulfonic Acids; Superoxides; Tumor Necrosis Factor-alpha; Ultraviolet Rays | 2016 |
4-Phenylselenyl-7-chloroquinoline, a new quinoline derivative containing selenium, has potential antinociceptive and anti-inflammatory actions.
The development of new drugs to treat painful and inflammatory clinical conditions continues to be of great interest. The present study evaluated the antinociceptive and anti-inflammatory effects of 4-phenylselenyl-7-chloroquinoline (4-PSQ). Mice were orally (p.o.) pretreated with 4-PSQ (0.1-25mg/kg), meloxicam (25mg/kg, a reference drug) or vehicle, 30min prior to the acetic acid, formalin, hot-plate and open-field tests. 4-PSQ reduced abdominal writhing induced by acetic acid and it caused an increase in latency time in the hot-plate test. 4-PSQ inhibited early and late phases of nociception and reduced the paw edema caused by formalin. Locomotor and exploratory activities in the open field test were not altered by treatments. In addition, a time-response curve was carried out by administration of 4-PSQ (25mg/kg; p.o.) at different times before the acetic acid injection. The antinociceptive effect in inhibiting acetic acid-induced abdominal writhing of 4-PSQ started at 0.5h and remained significant up to 4h after administration. Indeed, the anti-inflammatory and antioxidant properties of 4-PSQ were investigated. 4-PSQ diminished the edema formation and decreased the myeloperoxidase activity and reactive species levels induced by croton oil in the ear tissue. 4-PSQ partially protected against the decrease of the 2,2'-Azinobis-3-ethylbenzothiazoline 6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) levels induced by croton oil. Meloxicam presented similar results for 4-PSQ in tests evaluated. These results demonstrated that 4-PSQ exerts acute anti-inflammatory and antinociceptive actions, suggesting that it may represent an alternative in the development of future new therapeutic strategies. Topics: Analgesics; Animals; Anti-Inflammatory Agents; Behavior, Animal; Benzothiazoles; Biphenyl Compounds; Edema; Male; Mice; Organoselenium Compounds; Peroxidase; Picrates; Quinolines; Sulfonic Acids | 2016 |
HPLC profiling, antioxidant and in vivo anti-inflammatory activity of the ethanol extract of Syzygium jambos available in Bangladesh.
Syzygium jambos has been used as a traditional medicine for the treatment of inflammatory diseases in Bangladesh. The study investigates the high performance liquid chromatography (HPLC) profiling of phenolic compounds, and evaluates the antioxidant and anti-inflammatory activities of ethanol extract of S. jambos available in Bangladesh.. The extract was subjected to HPLC for the identification and quantification of the major bioactive polyphenols present in S. jambos. Antioxidant activity was determined using 2, 2'-azino bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical scavenging, reducing power assay, total antioxidant capacity, total phenolic and flavonoid content. Furthermore, the anti-inflammatory effect of the extract in rats for two different test models: carrageenan and histamine-induced paw edema was inspected.. High levels of catechin hydrate and rutin hydrate (99.00 and 79.20 mg/100 g extract, respectively) and moderate amounts of ellagic acid and quercetin (59.40 and 69.30 mg/100 g extract, respectively) were quantified in HPLC. Catechin hydrate from this plant extract was determined for the first time through HPLC. For ABTS scavenging assay, the median inhibition concentration (IC50) value of S. jambos was 57.80 µg/ml, which was significant to that of ascorbic acid (12.01 µg/ml). The maximum absorbance for reducing power assay was found to be 0.4934. The total antioxidant capacity, phenolic and flavonoid contents were calculated to be 628.50 mg/g of ascorbic acid, 230.82 mg/g of gallic acid and 11.84 mg/g of quercetin equivalent, respectively. At a dose of 400 mg/kg, a significant acute anti-inflammatory activity (P < 0.01) was observed in rats for both the test models with a reduction in the paw volume of 58.04 and 53.95 %, in comparison to those of indomethacin (62.94 and 65.79 %), respectively.. The results suggest that the phenolic and flavonoid compounds are responsible for acute anti-inflammatory and antioxidant activities of S. jambos. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Ascorbic Acid; Bangladesh; Benzothiazoles; Chromatography, High Pressure Liquid; Edema; Ethanol; Flavonoids; Free Radical Scavengers; Histamine; Indomethacin; Male; Oxidation-Reduction; Plant Extracts; Polyphenols; Rats, Wistar; Sulfonic Acids; Syzygium | 2016 |
Resveratrol-Loaded Liquid-Crystalline System Inhibits UVB-Induced Skin Inflammation and Oxidative Stress in Mice.
Evidence shows beneficial effects of resveratrol (RES) on human health. However, its poor aqueous solubility limits therapeutic effectiveness. Thus, the use of nanostructured delivery systems for RES, such as a liquid-crystalline system (LCS), could be viable. The purpose of this study was to develop, characterize, and determine the in vivo effectiveness of a RES-loaded LCS. We studied an LCS containing silicon glycol copolymer, polyether functional siloxane, and the polymeric dispersion carbomer homopolymer type B (C974) in the ratio 20:55:25 with and without RES. Results obtained using polarized light microscopy, small-angle X-ray scattering, and rheology analysis showed that the RES-loaded LCS system presents a lamellar structure and behaves as a non-Newtonian fluid presenting pseudoplastic (the apparent viscosity decreases as the stress increases) and thixotropic (the apparent viscosity decreases with the duration of stress) behaviors. Cytotoxicity studies showed that the formulation components are noncytotoxic. Topical application of a RES-loaded LCS protected hairless mice from UVB-irradiation-induced skin damage by inhibiting edema, neutrophil recruitment, lipid hydroperoxide and superoxide anion production, gp91phox mRNA expression, and oxidative stress. The RES-loaded LCS maintained 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and ferric reducing abilities, catalase activity, reduced glutathione levels, and mRNA expression of glutathione peroxidase 1 and glutathione reductase. The RES-loaded LCS also up-regulated matrix metalloproteinase-9 activity, IL-10 production, and mRNA expression of transcription factor Nrf2 and heme oxygenase-1. Therefore, a RES-loaded LCS is a promising new therapeutic approach to mitigate skin photodamage. Topics: Animals; Antioxidants; Benzothiazoles; Edema; Female; Glutathione; Glutathione Peroxidase; Glutathione Peroxidase GPX1; Heme Oxygenase-1; Humans; Inflammation; Interleukin-10; Matrix Metalloproteinase 9; Mice; Mice, Hairless; Molecular Structure; Oxidative Stress; Resveratrol; Skin; Stilbenes; Sulfonic Acids; Superoxides; Ultraviolet Rays | 2016 |
Phytochemical and biological studies on Alnus glutinosa subsp. glutinosa, A. orientalis var. orientalis and A. orientalis var. pubescens leaves.
Alnus species have been used for the treatment of rheumatism, hemorrhoids and for wound healing in folk medicine.. Aqueous and methanol extracts of A. glutinosa (L.) Gaertner subsp. glutinosa, A. orientalis Decne. var. orientalis and A. orientalis var. pubescens Dippel leaves were evaluated for their wound healing, anti-inflammatory and antioxidant activities. In vivo wound models of linear incision and circular excision were performed. "Inhibition of acetic acid-induced capillary permeability", "carrageenan-induced hind paw edema" and T"PA-induced ear edema" assays were applied to determine the anti-inflammatory effects. For the antioxidant activity assessment, DPPH and ABTS radicals scavenging effect, reducing power and denaturation of nonspecific hydroxyl radical-targeted 2-deoxyribose were used. In vitro inhibitory effects on enzymes hyaluronidase, collagenase and elastase were evaluated. The methanol extract of the leaves of A. glutinosa subsp. glutinosa (MB), the most potent extract, was fractionated by bioassay-guided fractionation technique. The structure of the isolated compound was determined as shikimic acid by using NMR and IR analyses.. MB increased the wound tension by 42.79% value and provided a contraction by 51.58%. Wound tension, contraction capacity and tissue hydroxyproline levels were increased with the application of the fraction EtOAc: MeOH (Fr. D), subfraction D. This is the first and unique study that investigates wound healing, anti-inflammatory and antioxidant effects of some Alnus taxons growing in Turkey. According to the results, shikimic acid was found to be the major compound responsible from the activity. Topics: Alnus; Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Capillary Permeability; Carbon-13 Magnetic Resonance Spectroscopy; Carrageenan; Disease Models, Animal; Edema; Glycoside Hydrolase Inhibitors; Hyaluronoglucosaminidase; Male; Methanol; Mice; Phytochemicals; Picrates; Plant Extracts; Plant Leaves; Proton Magnetic Resonance Spectroscopy; Rats, Sprague-Dawley; Shikimic Acid; Solvents; Spectrophotometry, Infrared; Sulfonic Acids; Tetradecanoylphorbol Acetate; Water; Wound Healing | 2016 |
Antioxidant, Anti-Inflammatory, and Antitumor Activities of Cultured Mycelia and Fruiting Bodies of the Elm Oyster Mushroom, Hypsizygus ulmarius (Agaricomycetes).
Ethanoic extracts from the fruiting bodies and mycelia of the elm oyster mushroom, Hypsizygus ulmarius, were evaluated for their antioxidant, anti-inflammatory, and antitumor properties. Ethnolic extracts of fruiting body and mycelia showed 88%, 85%, 71%, and 85%, 65%, 70% 2,2-diphenyl-1-picrylhydrazyl, hydroxyl (DPPH) and 2,2'-azinobis (3-ethyl benzothiazolin-6-sulfonic acid) (ABTS) radical-scavenging activities, respectively, at a concentration of 1000 µg/mL. The anti-inflammatory activity was determined using carrageenan- and formalin- induced paw edema models. Diclofenac was used as the standard drug. In both models, the mycelia extract showed higher activity than the fruiting body extract. The antitumor effect of the extracts against Dalton's Lymphoma Ascites cell-line-induced tumors showed significant antitumor activity. Mycochemical analysis confirmed the presence of many pharmacologically active compounds such as phenol, alkaloids, proteins, tannins, and polysaccharides. Among these, polysaccharides and phenolic compounds were present at a higher concentration in both extracts. These compounds might be largely responsible for the mushroom's medicinal properties. The results of this study indicate that H. ulmarius possesses significant antioxidant, anti-inflammatory, and antitumor properties. Topics: Agaricales; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Complex Mixtures; Diclofenac; Disease Models, Animal; Edema; Fruiting Bodies, Fungal; Male; Mice; Mycelium; Picrates; Sulfonic Acids | 2016 |
Anti-inflammatory, antioxidant and anti-Mycobacterium tuberculosis activity of viridiflorol: The major constituent of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk.
The leaves of Allophylus edulis (A. St.-Hil., A. Juss. & Cambess.) Radlk. (Sapindaceae) are traditionally used as a natural anti-inflammatory agent; however, there are no scientific studies demonstrating its activity essential oil. The content of essential oil in A. edulis may be the chemical basis to explain its ethnobotanical uses, since infusions of this plant are used to treat inflammation in the traditional medicine in Brazil.. This study evaluated the anti-inflammatory, antioxidant and anti-mycobacterial activities of the essential oil (EOAE) and viridiflorol, its main compound.. Essential oil from fresh leaves of A. edulis (EOAE) was obtained by hydrodistillation in a Clevenger-type apparatus. Forty-one compounds, accounting for 99.10% of the oil, were identified by gas chromatography-mass spectrometry (GC-MS). The major constituent of the oil was viridiflorol (30.88%). Additionally, the essential oil and viridiflorol were evaluated using an in vitro test against Mycobacterium tuberculosis and in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Both EOAE (30 and 100mg/kg) and viridiflorol (3 and 30mg/kg) by oral administration were assayed in carrageenan-induced mice paw oedema and pleurisy using subcutaneous injection of dexamethasone (0.5mg/kg) as the positive control.. EOAE and viridiflorol displayed moderate in vitro activity in the M. tuberculosis assay. In all tests, EOAE and viridiflorol showed moderate antioxidant activity compared with reference standards. Both EOAE and viridiflorol showed significant inhibition in the carrageenan-induced mice paw oedema via oral administration of the oil (30 and 100mg/kg), compound (3 and 30mg/kg), and subcutaneous injection of dexamethasone (0.5mg/kg, reference drug). Also EOAE and viridiflorol significantly inhibited carrageenan (Cg) induced pleurisy, reducing the migration of total leucocytes in mice by 62±5% (30mg/kg of oil), 35±8% (100mg/kg of oil), 71±5% (3mg/kg of viridiflorol) and 57±3% (30mg/kg of viridiflorol).. For the first time, the results from this work corroborate the literature, showing that A. edulis can be used as a natural anti-inflammatory agent. Moreover, both EOAE and viridiflorol exhibited biological activities, such as anti-mycobacterial, anti-inflammatory and antioxidant activity. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Antitubercular Agents; Benzothiazoles; Biphenyl Compounds; Carrageenan; Chemotaxis, Leukocyte; Dexamethasone; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Female; Gas Chromatography-Mass Spectrometry; Male; Mice; Mycobacterium tuberculosis; Oils, Volatile; Phytotherapy; Picrates; Plant Extracts; Plant Leaves; Plant Oils; Plants, Medicinal; Pleurisy; Sapindaceae; Sulfonic Acids; Terpenes; Time Factors | 2016 |
Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion.
Cuphea aequipetala (Lythraceae) is a medicinal plant highly appreciated in Mexico to treat stomach ailments such as pain and burning sensation, stomach infections, ulcers, diarrhea, dysentery, and different types of tumors and bruises. In this work, the infusion of aerial parts of this plant (CAI) was investigated for its polypharmacological potential.. In vitro anti-Helicobacter pylori activity was assessed by broth dilution method. Pharmacological studies included acute toxicity in mice using Lorke´s model, anti-inflammatory activity by xylene and TPA induced ear edema assay, as well as gastroprotection with ethanol-induced gastric ulcer model. DPPH and ABTS assays were used to determine antioxidant capacity. Polyphenols and flavonoid contents were determined by Folin-Ciocalteu method and AlCl3 reaction, respectively.. CAI showed good anti-Helicobacter pylori activity with a MIC of 125μg/mL. The infusion was not toxic according to Lorke's model with a LD50 greater than 5g/kg. CAI exhibited low anti-edematogenic action in the models assayed. Oral administration of 300mg/kg CAI significantly reduced gastric lesions by 87.9%. The effect was reversed only by indomethacin and N-ethylmaleimide demonstrating the role of endogenous prostaglandins and sulfhydryl compounds in gastroprotection. Total phenolic and flavonoid contents of CAI were 109.9mg GAE/g DW and 28.1mg QE/g DW, respectively, and the infusion exhibited a good antioxidant activity that is thought to play a role in its biological activity. The analysis of a preliminary fractionation of the infusion indicates that the complete extract conserves all its pharmacological activities in contrast to fractionated extracts.. Cuphea aequipetala is a promising native herb in an integral therapy for the treatment of bacterial or non-bacterial gastric ulcer because it possesses some anti-inflammatory properties, as well as exhibits good gastroprotective and antibacterial effects. It represents an important source for the isolation of anti-Helicobacter pylori compounds. This work provides ethnopharmacological evidence that supports the traditional use of this species. Topics: Animals; Anti-Inflammatory Agents; Anti-Ulcer Agents; Antioxidants; Benzothiazoles; Cuphea; Edema; Ethanol; Flavonoids; Helicobacter pylori; Male; Mice; Plant Components, Aerial; Plant Extracts; Polyphenols; Stomach Ulcer; Sulfonic Acids; Tetradecanoylphorbol Acetate; Toxicity Tests, Acute; Xylenes | 2014 |
Chemical and pharmacological investigation of the stem bark of Synadenium grantii.
Based on the fact that Synadenium grantii is used in folk medicine for the treatment of peptic ulcers and inflammatory diseases, this work describes its chemical and pharmacological properties. Pharmacological investigation of the crude bark extract showed a high antioxidant activity over several scavenger systems, such as 2,2'-azino-bis (3-ethylenebenzothiazoline-6-sulfonic acid)• +, 1-diphenyl-2-picrylhydrazyl•, O2 • - , and HOCl, as well as an enzymatic system with human myeloperoxidase and an ex vivo hemolysis system. Furthermore, the oral administration of the crude bark extract was able to reduce carrageenan-induced rat paw edema as effectively as ibuprofen. These biological activities may be associated with the presence of flavonoids and terpenes, as revealed by HPLC and NMR analyses of the crude stem bark extract. The phytochemical investigations in this study resulted in the isolation of friedelin and 3β-friedelinol for the first time, while euphol and lanosterol were also isolated. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Carrageenan; Edema; Euphorbia; Female; Flavonoids; Humans; Inflammation; Lanosterol; Peroxidase; Phytotherapy; Picrates; Plant Bark; Plant Extracts; Plant Stems; Rats, Wistar; Sulfonic Acids; Triterpenes | 2014 |
Phytochemical study and anti-inflammatory, antidiabetic and free radical scavenger evaluations of Krameria pauciflora methanol extract.
The plant Krameria pauciflora MOC et. Sessé ex DC. is used as an anti-inflammatory and antidiabetic in traditional medicine. The aim of this study was to evaluate the in vivo anti-inflammatory and antidiabetic effects of a methanol extract from the roots of K. pauciflora. Dichloromethane and ethyl acetate extracts obtained by partitioning the methanol extract were also evaluated. Complete methanol and dichloromethane extracts showed anti-inflammatory effects at 3 mg/kg. An anti-inflammatory effect similar to indomethacin (10 mg/kg) was observed when the methanol and dichloromethane extracts, which contain a cycloartane-type triterpene and an sterol, were administered orally at several doses (3, 10, 30 and 100 mg/kg), whereas no anti-inflammatory effect was observed at any dose for the ethyl acetate extract, which contains catechin-type flavonoids. The antidiabetic effect of each extract was also determined. An antihyperglycaemic effect was observed in diabetic rats, but no effect in normoglycaemic animals was observed when the methanol extract was administrated at 30 mg/kg. All of the extracts exhibited radical scavenger activity. Additionally, constituents from all of the extracts were identified by NMR. This article supports the use of K. pauciflora as an anti-inflammatory because it exhibits a similar effect to indomethacin. However, its antidiabetic effect is not completely clear, although it could be useful for preventing diabetic complications. Topics: Animals; Anti-Inflammatory Agents; Area Under Curve; Benzothiazoles; Biphenyl Compounds; Blood Glucose; Carrageenan; Diabetes Mellitus, Experimental; Edema; Foot; Free Radical Scavengers; Free Radicals; Hypoglycemic Agents; Krameriaceae; Male; Methanol; Picrates; Plant Extracts; Plant Roots; Rats; Rats, Wistar; Sulfonic Acids | 2012 |
Anti-inflammatory, cyclooxygenase inhibitory and antioxidant activities of standardized extracts of Tridax procumbens L.
The standardized EtOAc, MeOH and 70% EtOH extracts of Tridax procumbens aerial parts showed significant inhibition of rat paw edema at a medium dose of 200mg/kg and the EtOAC extract was the most active. These extracts were standardized by HPLC with the help of chemical markers. Further, the extracts were evaluated for COX-1 and COX-2 inhibitory activity and EtOAc extract exhibited the highest inhibition of COX-1 and COX-2 at 50 μg/mL. Cent aurein, centaureidin and bergenin were isolated as COX-1 and COX-2 inhibitory principles from the EtOAc extract. The extracts also exhibited antioxidant activity against DPPH and ABTS free radicals. The anti-inflammatory activity of T. procumbens aerial parts could be at least in part due to COX-1, COX-2 enzyme inhibition and free radical-scavenging activities which may be attributed to the presence of flavonoids and other polyphenols in the extracts. Topics: Animals; Antioxidants; Asteraceae; Benzothiazoles; Biphenyl Compounds; Chromatography, High Pressure Liquid; Cyclooxygenase Inhibitors; Edema; Female; Flavonoids; Phenols; Phytotherapy; Picrates; Plant Components, Aerial; Plant Extracts; Polyphenols; Rats; Rats, Sprague-Dawley; Sulfonic Acids; Thiazoles | 2011 |
Synthesis and evaluation of analgesic and anti-inflammatory activities of most active free radical scavenging derivatives of embelin-A structure-activity relationship.
Antioxidant and related properties of the plant Embelia ribes and embelin are well known. In the present study embelin was condensed with various aromatic substituted primary amines to yield ten new and one reported derivatives along with monomethyl embelin. All these compounds along with embelin were evaluated for in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) and 2,2'-diphenyl-1-picryl hydrazyl (DPPH) methods. Two para-substituted embelin derivatives showed potent antioxidant activity. These compounds along with embelin were studied for analgesic and anti-inflammatory activities at 10 and 20 mg/kg doses by standard methods. Potent analgesic activity higher than the standard pentazocine was observed. Embelin and both of its derivatives almost completely abolished the acetic acid induced writhing. p-Sulfonylamine phenylamino derivative showed better anti-inflammatory activity than embelin. Topics: Animals; Anti-Inflammatory Agents; Benzoquinones; Benzothiazoles; Edema; Embelia; Free Radical Scavengers; Fruit; Hindlimb; Mice; Pain; Plant Extracts; Rats; Structure-Activity Relationship; Sulfonic Acids | 2011 |
Antioxidant, analgesic, and anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola.
[corrected] The Taxillus liquidambaricola has been used to treat rheumatic arthralgia, threatened abortion and hypertension in the Chinese traditional medicine. However, there is no scientific evidence which supports the use in the literature. This study aimed to determine the antioxidant, and analgesic activities and the mechanism of anti-inflammatory activities of the ethanolic extracts of Taxillus liquidambaricola (ETL) in cell and animal models.. The following activities were investigated: free radical scavenging and antioxidant activities [2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and DPPH (1, 1-diphenyl-2-picrylhydrazyl)], analgesic (writhing and formalin test), and anti-inflammatory [lipopolysaccharide (LPS) induced nitric oxide (NO) production in RAW264.7 macrophages and paw-edema induced by λ-carrageenan (Carr)]. We also investigate the anti-inflammatory mechanism of ETL via studies of the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and the levels of malondialdehyde (MDA) in the edema paw. Serum NO and tumor necrosis factor α (TNF-α) were also measured in vivo.. ETL showed the highest TEAC and DPPH radical scavenging activities, respectively. ETL also had highest contents of polyphenol and flavonoid contents. We evaluated that ETL and the reference compound of quercetin decreased the LPS-induced NO production and expressions of iNOS and COX-2 in RAW264.7 cells. Treatment of male ICR mice with ETL significantly inhibited the numbers of acetic acid-induced writhing response and the formalin-induced pain in the late phase. Administration of ETL showed a concentration dependent inhibition on paw edema development after Carr treatment in mice. The anti-inflammatory effects of ETL could be via NO and TNF-α suppression and associated with the increase in the activities of antioxidant enzymes. Western blotting revealed that ETL decreased Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions.. Anti-inflammatory mechanisms of ETL might be correlated to the decrease in the level of MDA, iNOS, and COX-2 via increasing the activities of CAT, SOD, and GPx in the edema paw. Overall, the results showed that ETL demonstrated antioxidant, antinociceptive, and anti-inflammatory activity, which supports previous claims of the traditional use for inflammation and pain. Topics: Acetic Acid; Analgesics; Animals; Anti-Inflammatory Agents; Antioxidants; Benzothiazoles; Biphenyl Compounds; Carrageenan; Catalase; Cell Line; Chromatography, High Pressure Liquid; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Drugs, Chinese Herbal; Edema; Endotoxins; Ethanol; Formaldehyde; Glutathione Peroxidase; Loranthaceae; Macrophages; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Nitric Oxide; Nitric Oxide Synthase Type II; Pain; Picrates; Plants, Medicinal; Solvents; Sulfonic Acids; Superoxide Dismutase; Thiazoles; Time Factors; Tumor Necrosis Factor-alpha | 2011 |