2-2--(hydroxynitrosohydrazono)bis-ethanamine and Neointima

2-2--(hydroxynitrosohydrazono)bis-ethanamine has been researched along with Neointima* in 2 studies

Other Studies

2 other study(ies) available for 2-2--(hydroxynitrosohydrazono)bis-ethanamine and Neointima

ArticleYear
Lysed Erythrocyte Membranes Promote Vascular Calcification.
    Circulation, 2019, 04-23, Volume: 139, Issue:17

    Intraplaque hemorrhage promotes atherosclerosis progression, and erythrocytes may contribute to this process. In this study we examined the effects of red blood cells on smooth muscle cell mineralization and vascular calcification and the possible mechanisms involved.. Erythrocytes were isolated from human and murine whole blood. Intact and lysed erythrocytes and their membrane fraction or specific erythrocyte components were examined in vitro using diverse calcification assays, ex vivo by using the murine aortic ring calcification model, and in vivo after murine erythrocyte membrane injection into neointimal lesions of hypercholesterolemic apolipoprotein E-deficient mice. Vascular tissues (aortic valves, atherosclerotic carotid artery specimens, abdominal aortic aneurysms) were obtained from patients undergoing surgery.. The membrane fraction of lysed, but not intact human erythrocytes promoted mineralization of human arterial smooth muscle cells in culture, as shown by Alizarin red and van Kossa stain and increased alkaline phosphatase activity, and by increased expression of osteoblast-specific transcription factors (eg, runt-related transcription factor 2, osterix) and differentiation markers (eg, osteopontin, osteocalcin, and osterix). Erythrocyte membranes dose-dependently enhanced calcification in murine aortic rings, and extravasated CD235a-positive erythrocytes or Perl iron-positive signals colocalized with calcified areas or osteoblast-like cells in human vascular lesions. Mechanistically, the osteoinductive activity of lysed erythrocytes was localized to their membrane fraction, did not involve membrane lipids, heme, or iron, and was enhanced after removal of the nitric oxide (NO) scavenger hemoglobin. Lysed erythrocyte membranes enhanced calcification to a similar extent as the NO donor diethylenetriamine-NO, and their osteoinductive effects could be further augmented by arginase-1 inhibition (indirectly increasing NO bioavailability). However, the osteoinductive effects of erythrocyte membranes were reduced in human arterial smooth muscle cells treated with the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide or following inhibition of NO synthase or the NO receptor soluble guanylate cyclase. Erythrocytes isolated from endothelial NO synthase-deficient mice exhibited a reduced potency to promote calcification in the aortic ring assay and after injection into murine vascular lesions.. Our findings in cells, genetically modified mice, and human vascular specimens suggest that intraplaque hemorrhage with erythrocyte extravasation and lysis promotes osteoblastic differentiation of smooth muscle cells and vascular lesion calcification, and also support a role for erythrocyte-derived NO.

    Topics: Animals; Aorta; Cell Differentiation; Cells, Cultured; Durapatite; Erythrocyte Membrane; Guanylate Cyclase; Hemorrhage; Humans; Hypercholesterolemia; Mice; Mice, Knockout, ApoE; Myocytes, Smooth Muscle; Neointima; Nitric Oxide; Nitric Oxide Synthase Type III; Organ Culture Techniques; Osteoblasts; Triazenes; Vascular Calcification

2019
Nitric oxide inhibits vascular smooth muscle cell proliferation and neointimal hyperplasia by increasing the ubiquitination and degradation of UbcH10.
    Cell biochemistry and biophysics, 2011, Volume: 60, Issue:1-2

    Nitric oxide (NO) limits formation of neointimal hyperplasia in animal models of arterial injury in large part by inhibiting vascular smooth muscle cell (VSMC) proliferation through cell cycle arrest. The ubiquitin-conjugating enzyme UbcH10 is responsible for ubiquitinating cell cycle proteins for proper exit from mitosis. We hypothesize that NO prevents VSMC proliferation, and hence neointimal hyperplasia, by decreasing levels of UbcH10. Western blotting and immunofluorescent staining showed that NO reduced UbcH10 levels in a concentration-dependent manner in VSMC harvested from the abdominal aortas of Sprague-Dawley rats. Treatment with NO or siRNA to UbcH10 decreased both UbcH10 levels and VSMC proliferation (P<0.001), while increasing UbcH10 levels by plasmid transfection or angiotensin II stimulation increased VSMC proliferation to 150% (P=0.008) and 212% (P=0.002) of control, respectively. Immunofluorescent staining of balloon-injured rat carotid arteries showed a ~4-fold increase in UbcH10 levels, which was profoundly decreased following treatment with NO. Western blotting of carotid artery lysates showed no UbcH10 in uninjured vessels, a substantial increase in the injury alone group, and a significant decrease in the injury+NO group (~3-fold reduction versus injury alone). Importantly, in vitro and in vivo, a marked increase in polyubiquitinated UbcH10 was observed in the NO-treated VSMC and carotid arteries, respectively, indicating that NO may be decreasing unmodified UbcH10 levels by increasing its ubiquitination. Central to our hypothesis, we report that NO decreases UbcH10 levels in VSMC in vitro and following arterial injury in vivo in association with increasing polyubiquitinated-UbcH10 levels. These changes in UbcH10 levels correlate with VSMC proliferation and neointimal hyperplasia, making UbcH10 a promising therapeutic target for inhibiting this proliferative disease.

    Topics: Animals; Blotting, Western; Carotid Artery Injuries; Cell Cycle; Cell Proliferation; Cells, Cultured; Dose-Response Relationship, Drug; Hyperplasia; Male; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Nitric Oxide; Nitric Oxide Donors; Rats; Rats, Sprague-Dawley; RNA Interference; Triazenes; Tunica Intima; Ubiquitin-Conjugating Enzymes; Ubiquitination

2011