2-2--(hydroxynitrosohydrazono)bis-ethanamine and Infarction--Middle-Cerebral-Artery

2-2--(hydroxynitrosohydrazono)bis-ethanamine has been researched along with Infarction--Middle-Cerebral-Artery* in 3 studies

Other Studies

3 other study(ies) available for 2-2--(hydroxynitrosohydrazono)bis-ethanamine and Infarction--Middle-Cerebral-Artery

ArticleYear
Nitric oxide donor up-regulation of SDF1/CXCR4 and Ang1/Tie2 promotes neuroblast cell migration after stroke.
    Journal of neuroscience research, 2009, Volume: 87, Issue:1

    We tested the hypothesis that a nitric oxide donor, DETA-NONOate, up-regulates stromal cell-derived factor-1 (SDF1) and angiopoietin 1 (Ang1) in the ischemic brain and their respective receptors chemokine CXC motif receptor 4 (CXCR4) and Tie2 in the subventricular zone (SVZ) and thereby promote SVZ neuroblast cell migration after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hr later DETA-NONOate (0.4 mg/kg) or phosphate-buffered solution was intravenously administered. Mice were sacrificed at 14 days for histological assessment or sacrificed at 3 days for analysis by real-time polymerase chain reaction and migration after MCAo. To elucidate whether SDF1/CXCR4 and Ang1/Tie2 pathways mediate DETA-NONOate-induced SVZ migration after stroke, SDF1alpha, Ang1 peptide, a specific antagonist of CXCR4 (AMD3100), and a neutralizing antibody of Tie2 (anti-Tie2) were used in vitro. DETA-NONOate significantly increased the percentage area of doublecortin (DCX, a marker of migrating neuroblasts)-immunoreactive cells in the SVZ and ischemic boundary zone. DETA-NONOate significantly increased the expression of SDF1 and Ang1 in the ischemic border and up-regulated CXCR4 and Tie2 in the SVZ compared with MCAo control. DCX-positive cell migration from SVZ explants was significantly increased in the DETA-NONOate treatment group compared with MCAo-alone animals. In vitro, SDF1alpha and Ang1 significantly increased SVZ explants cell migration. In addition, inhibition of CXCR4 or Tie2 significantly attenuated DETA-NONOate-induced SVZ cell migration. Our data indicate that treatment of stroke with a nitric oxide donor up-regulates SDF1/CXCR4 and Ang1/Tie2 pathways and thereby likely increases SVZ neuroblast cell migration.

    Topics: Adult Stem Cells; Analysis of Variance; Angiopoietin-1; Animals; Cell Movement; Cerebral Ventricles; Chemokine CXCL12; Disease Models, Animal; Doublecortin Protein; In Vitro Techniques; Infarction, Middle Cerebral Artery; Male; Mice; Mice, Inbred C57BL; Nitric Oxide Donors; Nitroso Compounds; Receptor, TIE-2; Receptors, CXCR4; Up-Regulation

2009
Role of endothelial nitric oxide synthetase in arteriogenesis after stroke in mice.
    Neuroscience, 2009, Mar-17, Volume: 159, Issue:2

    Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (P<0.05; n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke.

    Topics: Actins; Animals; Carotid Artery, Common; Cell Movement; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Enzyme Inhibitors; Infarction, Middle Cerebral Artery; Ki-67 Antigen; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Smooth Muscle; Neovascularization, Physiologic; Neurologic Examination; NG-Nitroarginine Methyl Ester; Nitric Oxide Donors; Nitric Oxide Synthase Type III; Nitroso Compounds; Recovery of Function; Time Factors

2009
A nitric oxide donor induces neurogenesis and reduces functional deficits after stroke in rats.
    Annals of neurology, 2001, Volume: 50, Issue:5

    The adult rodent brain is capable of generating neuronal progenitor cells in the subventricular zone, and in the dentate gyrus of the hippocampus, throughout the life of the animal. Signals that regulate progenitor cell proliferation, differentiation, and migration are not well known. We report that administration of a nitric oxide donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) aminio]diazen-1-ium-1,2-diolate (DETA/NONOate), to young adult rats significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus. Treatment with DETA/ NONOate also increases neurogenesis in the dentate gyrus. Furthermore, administration of DETA/NONOate to rats subjected to embolic middle cerebral artery occlusion significantly increases cell proliferation and migration in the subventricular zone and the dentate gyrus, and these rats exhibit significant improvements of neurological outcome during recovery from ischemic stroke. Administration of DETA/NONOate significantly increases cortical levels of guanosine monophosphate both in ischemic and nonischemic rats, supporting the role of nitric oxide in promoting cell proliferation and neurogenesis. Thus, our data indicate that nitric oxide is involved in the regulation of progenitor cells and neurogenesis in the adult brain. This suggests that nitric oxide delivered to the brain well after stroke may have therapeutic benefits.

    Topics: Animals; Bromodeoxyuridine; Cell Division; Cell Movement; Cerebral Cortex; Cyclic GMP; Dentate Gyrus; Disease Models, Animal; Infarction, Middle Cerebral Artery; Lateral Ventricles; Male; Neurons; Nitric Oxide Donors; Nitroso Compounds; Rats; Rats, Wistar; Stroke; Treatment Outcome

2001