2-2--(hydroxynitrosohydrazono)bis-ethanamine has been researched along with Brain-Ischemia* in 5 studies
5 other study(ies) available for 2-2--(hydroxynitrosohydrazono)bis-ethanamine and Brain-Ischemia
Article | Year |
---|---|
A nitric oxide donor reduces brain injury and enhances recovery of cerebral blood flow after hypoxia-ischemia in the newborn rat.
Nitric oxide (NO) released in response to hypoxia-ischemia (HI) in the newborn brain may mediate both protective and pathologic responses. We sought to determine whether pharmacologic increase of NO using an NO donor would reduce neurologic injury resulting from HI in the postnatal day 7 rat. We measured NO levels and CBF in the presence of either a NOS inhibitor, N-nitro-l-arginine methyl ester (L-NAME) or an NO donor (Z)-1-[N-(2-amino-ethyl)-N-(2-ammonio-ethyl)amino]diazen-1-ium-1,2-diolate (DETANONOate). Both inhibition of NOS and administration of an NO donor reduced neuropathologic injury after 7-day recovery. NO levels decreased in both ischemic and contralateral hemispheres during HI. This response was prevented by treatment with DETANONOate. Despite the decrease in NO, CBF increased during ischemia in the contralateral hemisphere but decreased when combined with brief hypoxia. Treatment with L-NAME abolished these increases, which were not altered by DETANONOate. Reduction of cellular metabolism by mild hypothermia also reduced both NO and CBF. Following prolonged HI, CBF remained decreased in the ischemic hemisphere up to 24-h recovery. This decrease was prevented by treatment with DETANONOate. These data show that administration of an NO donor reduces neurologic injury following HI in the newborn rat. This mechanism of this protection, in part, is due to an increase in the rate of recovery of CBF compared to vehicle-treated animals. Augmentation of NO-dependent increases in CBF may serve to improve neurologic outcome after perinatal asphyxia. Topics: Aldehydes; Animals; Animals, Newborn; Brain Injuries; Brain Ischemia; Cerebrovascular Circulation; Enzyme Inhibitors; Functional Laterality; Laser-Doppler Flowmetry; Lipid Peroxidation; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Donors; Nitroso Compounds; Rats; Rats, Wistar; Recovery of Function | 2007 |
Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke.
Stromal cell-derived factor-1 (SDF1) and its chemokine (CXC motif) receptor 4 (CXCR4), along with matrix metalloproteinases (MMPs), regulate bone marrow stromal cell (BMSC) migration. We tested the hypothesis that a nitric oxide donor, DETA-NONOate, increases endogenous ischemic brain SDF1 and BMSC CXCR4 and MMP9 expression, which promotes BMSC migration into ischemic brain and thereby enhances functional outcome after stroke. C57BL/6J mice were subjected to middle cerebral artery occlusion (MCAo), and 24 hours later, the following were intravenously administered (n = 9 mice per group): (a) phosphate-buffered saline; (b) BMSCs (5 x 10(5)); (c) 0.4 mg/kg DETA-NONOate; (d) combination of CXCR4-inhibition BMSCs with DETA-NONOate; and (e) combination of BMSCs with DETA-NONOate. To elucidate the mechanisms underlying combination-enhanced BMSC migration, transwell cocultures of BMSC with mouse brain endothelial cells (MBECs) or astrocytes were performed. Combination treatment significantly improved functional outcome after stroke compared with BMSC monotherapy and MCAo control, and it increased SDF1 expression in the ischemic brain compared with DETA-NONOate monotherapy and MCAo control. The number of BMSCs in the ischemic brain was significantly increased after combination BMSC with DETA-NONOate treatment compared with monotherapy with BMSCs. The number of engrafted BMSCs was significantly correlated with functional outcome after stroke. DETA-NONOate significantly increased BMSC CXCR4 and MMP9 expression and promoted BMSC adhesion and migration to MBECs and astrocytes compared with nontreatment BMSCs. Inhibition of CXCR4 or MMPs in BMSCs significantly decreased DETA-NONOate-induced BMSC adhesion and migration. Our data demonstrate that DETA-NONOate enhanced the therapeutic potency of BMSCs, possibly via upregulation of SDF1/CXCR4 and MMP pathways, and increased BMSC engraftment into the ischemic brain. Topics: Animals; Bone Marrow Cells; Brain Ischemia; Cell Movement; Chemokine CXCL12; Male; Matrix Metalloproteinases; Mice; Mice, Inbred C57BL; Nitric Oxide Donors; Nitroso Compounds; Receptors, CXCR4; Signal Transduction; Stroke; Stromal Cells; Up-Regulation | 2007 |
Protective effect of keishi-bukuryo-gan and its constituent medicinal plants against nitric oxide donor-induced neuronal death in cultured cerebellar granule cells.
Keishi-bukuryo-gan (Gui-Zhi-Fu-Ling-Wan) (KBG) is a traditional Chinese/Japanese medical (Kampo) formulation that has been administered to patients with "Oketsu" (blood stagnation) syndrome. In the process of neuronal cell death induced by brain ischemia, excessive generation of nitric oxide (NO) free radicals is implicated in the neurotoxicity. In the present study, we examined the protective effects of KBG and its constituent medicinal plants against NO donors, sodium nitroprusside (SNP) and 2,2'-(hydroxynitrosohydrazino)bis-ethanamine (NOC18)-induced neuronal death in cultured rat cerebellar granule cells (CGCs). MTT assay showed cell viability to be significantly increased by the addition of KBG extract (KBGE) (100 microg/ml), Cinnamomi Cortex extract (CCE) (3, 10 and 30 microg/ml), Paeoniae Radix extract (PRE) (100 microg/ml) and Moutan Cortex extract (MCE) (10 and 30 microg/ml) compared with exposure to SNP (30 microM, 24 h) only. Also, cell viability was significantly increased by the addition of KBGE (100 and 300 microg/ml), CCE (30 and 100 microg/ml), PRE (100 and 300 microg/ml) and MCE (30 and 100 microg/ml) compared with exposure to NOC 18 (100 microM, 48 h) only. Persicae Semen extract and Hoelen extract did not protect against NO donor-induced neuronal death. These results suggest that KBG has protective effect against NO-mediated neuronal death in cultured CGCs and that it is derived from Cinnamomi Cortex, Paeoniae Radix and Moutan Cortex. Topics: Animals; Brain Ischemia; Cell Survival; Cerebellum; Cinnamomum; Drugs, Chinese Herbal; Nitroprusside; Nitroso Compounds; Paeonia; Phytotherapy; Plants, Medicinal; Polyporales; Protective Agents; Prunus; Rats; Rats, Wistar | 2004 |
Neurotoxic nitric oxide rapidly depolarizes and permeabilizes mitochondria by dynamically opening the mitochondrial transition pore.
Exposure of SH-SY5Y neuroblastoma or rat cortical neurons to diethylenetriamine-NO (DETA-NO) rapidly depolarized mitochondria. In SH-SY5Y DETA-NO activated caspase 3 and produced cell death. Mitochondrial depolarization in SH-SY5Y was visualized both with JC-1 accumulation and as dequenching of calcein fluorescence in mitochondria initially loaded with calcein-AM and tetramethylrhodamine methyl ester (TMRM). Calcein/TMRM-visualized mitochondrial depolarization was prevented by cyclosporin A (CsA) or approximately two-fold increased levels of BclXL protein. Dynamic imaging of mitochondrial potential (Deltapsi M) with TMRM showed that DETA-NO induced cycles of mitochondrial depolarization/repolarization ("flickering"). Fifteen-30 min of DETA-NO exposure caused high-frequency flickering with small peak size; 2 h of DETA-NO produced large peaks with prolonged depolarization. NO-induced flickering but not that from Bax was blocked by the calcium uniporter antagonist Ru360. Our findings show rapid-onset, dynamic regulation of Deltapsi M by NO, implying that neuroprotective therapies for brain ischemia target cell death processes downstream of effects of NO on mitochondria. Topics: Animals; bcl-X Protein; Brain Ischemia; Calcium Channels; Calcium-Binding Proteins; Caspase 3; Caspases; Cell Death; Cell Membrane Permeability; Cyclosporine; Dose-Response Relationship, Drug; Fluorescent Dyes; Humans; Intracellular Membranes; Ion Channels; Membrane Potentials; Mitochondria; Nerve Degeneration; Neurons; Nitric Oxide; Proto-Oncogene Proteins c-bcl-2; Rats; Rhodamines; Ruthenium Compounds; Triazenes; Tumor Cells, Cultured | 2003 |
Down-regulation of neuronal nitric oxide synthase by nitric oxide after oxygen-glucose deprivation in rat forebrain slices.
The precise role that nitric oxide (NO) plays in the mechanisms of ischemic brain damage remains to be established. The expression of the inducible isoform (iNOS) of NO synthase (NOS) has been demonstrated not only in blood and glial cells using in vivo models of brain ischemia-reperfusion but also in neurons in rat forebrain slices exposed to oxygen-glucose deprivation (OGD). We have used this experimental model to study the effect of OGD on the neuronal isoform of NOS (nNOS) and iNOS. In OGD-exposed rat forebrain slices, a decrease in the calcium-dependent NOS activity was found 180 min after the OGD period, which was parallel to the increase during this period in calcium-independent NOS activity. Both dexamethasone and cycloheximide, which completely inhibited the induction of the calcium-independent NOS activity, caused a 40-70% recovery in calcium-dependent NOS activity when compared with slices collected immediately after OGD. The NO scavenger oxyhemoglobin produced complete recovery of calcium-dependent NOS activity, suggesting that NO formed after OGD is responsible for this down-regulation. Consistently, exposure to the NO donor (Z)-1-[(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-iu m-1,2-diolate (DETA-NONOate) for 180 min caused a decrease in the calcium-dependent NOS activity present in control rat forebrain slices. Furthermore, OGD and DETA-NONOate caused a decrease in level of both nNOS mRNA and protein. In summary, our results indicate that iNOS expression down-regulates nNOS activity in rat brain slices exposed to OGD. These studies suggest important and complex interactions between NOS isoforms, the elucidation of which may provide further insights into the physiological and pathophysiological events that occur during and after cerebral ischemia. Topics: Animals; Brain Ischemia; Calcium; Cell Hypoxia; Cycloheximide; Dexamethasone; Enzyme Activation; Feedback; Gene Expression Regulation, Enzymologic; Glucocorticoids; Glucose; Hemoglobins; Hypoxia, Brain; L-Lactate Dehydrogenase; Male; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type II; Nitroso Compounds; Organ Culture Techniques; Oxygen; Prosencephalon; Protein Synthesis Inhibitors; Rats; Rats, Sprague-Dawley; RNA, Messenger | 1999 |