2-(4-(2-carboxyethyl)phenethylamino)-5--n-ethylcarboxamidoadenosine has been researched along with Hyperplasia* in 3 studies
3 other study(ies) available for 2-(4-(2-carboxyethyl)phenethylamino)-5--n-ethylcarboxamidoadenosine and Hyperplasia
Article | Year |
---|---|
Topical application of the adenosine A2A receptor agonist CGS-21680 prevents phorbol-induced epidermal hyperplasia and inflammation in mice.
The nucleoside adenosine is a known regulator of immunity and inflammation that mediates, at least in part, the anti-inflammatory effect of methotrexate, an immunosuppressive agent widely used to treat autoimmune inflammatory diseases. Adenosine A2A receptors play a key role in the inhibition of the inflammatory process besides promoting wound healing. Therefore, we aimed to determine the topical effect of a selective agonist, CGS-21680, on a murine model of skin hyperplasia with a marked inflammatory component. Pretreatment with either CGS-21680 (5 μg per site) or the reference agent dexamethasone (200 μg/site) prevented the epidermal hyperplasia and inflammatory response induced by topical application of 12-O-tetradecanoylphorbol-13-acetate (TPA, 2 nmol/site) for three consecutive days. The histological analysis showed that both CGS-21680 and dexamethasone produced a marked reduction of inflammatory cell infiltrate, which correlated with diminished myeloperoxidase (MPO) activity in skin homogenates. Both treatments reduced the levels of the chemotactic mediators LTB4 and CXCL-1, and the inflammatory cytokine TNF-α, through the suppression of NFκB phosphorylation. The immunohistochemical analysis of the hyperproliferative markers cytokeratin 6 (CK6) and Ki67 revealed that while both agents inhibit the number of proliferating cells in the epidermis, CGS-21680 treatment promoted dermal fibroblasts proliferation. Consistently, increased collagen deposition in dermis was observed in tissue sections from agonist-treated mice. Our results showed that CGS 21680 efficiently prevents phorbol-induced epidermal hyperplasia and inflammation in mice without the deleterious atrophic effect of topical corticosteroids. Topics: Adenosine; Adenosine A2 Receptor Agonists; Administration, Topical; Animals; Anti-Inflammatory Agents; Cell Proliferation; Collagen; Cytokines; Dexamethasone; Disease Models, Animal; Epidermis; Female; Hyperplasia; Inflammation; Mice; Peroxidase; Phenethylamines; Skin Diseases; Tetradecanoylphorbol Acetate | 2014 |
A(2B) receptors mediate antimitogenesis in vascular smooth muscle cells.
Adenosine inhibits growth of vascular smooth muscle cells. The goals of this study were to determine which adenosine receptor subtype mediates the antimitogenic effects of adenosine and to investigate the signal transduction mechanisms involved. In rat aortic vascular smooth muscle cells, platelet-derived growth factor-BB (PDGF-BB) (25 ng/mL) stimulated DNA synthesis ([(3)H]thymidine incorporation), cellular proliferation (cell number), collagen synthesis ([(3)H]proline incorporation), total protein synthesis ([(3)H]leucine incorporation), and mitogen-activated protein (MAP) kinase activity. The adenosine receptor agonists 2-chloroadenosine and 5'-N-methylcarboxamidoadenosine, but not N(6)-cyclopentyladenosine or CGS21680, inhibited the growth effects of PDGF-BB, an agonist profile consistent with an A(2B) receptor-mediated effect. The adenosine receptor antagonists KF17837 and 1,3-dipropyl-8-p-sulfophenylxanthine, but not 8-cyclopentyl-1, 3-dipropylxanthine, blocked the growth-inhibitory effects of 2-chloroadenosine and 5'-N-methylcarboxamidoadenosine, an antagonist profile consistent with an A(2) receptor-mediated effect. Antisense, but not sense or scrambled, oligonucleotides to the A(2B) receptor stimulated basal and PDGF-induced DNA synthesis, cell proliferation, and MAP kinase activity. Moreover, the growth-inhibitory effects of 2-chloroadenosine, 5'-N-methylcarboxamidoadenosine, and erythro-9-(2-hydroxy-3-nonyl) adenine plus iodotubericidin (inhibitors of adenosine deaminase and adenosine kinase, respectively) were abolished by antisense, but not scrambled or sense, oligonucleotides to the A(2B) receptor. Our findings strongly support the hypothesis that adenosine causes inhibition of vascular smooth muscle cell growth by activating A(2B) receptors coupled to inhibition of MAP kinase activity. Pharmacological or molecular biological activation of A(2B) receptors may prevent vascular remodeling associated with hypertension, atherosclerosis, and restenosis following balloon angioplasty. Topics: 2-Chloroadenosine; Adenine; Adenosine; Adenosine Kinase; Adenosine-5'-(N-ethylcarboxamide); Animals; Anticoagulants; Antihypertensive Agents; Aorta, Abdominal; Becaplermin; Cell Division; Dinucleoside Phosphates; Enzyme Inhibitors; Hyperplasia; Male; MAP Kinase Signaling System; Muscle, Smooth, Vascular; Oligonucleotides, Antisense; Phenethylamines; Platelet-Derived Growth Factor; Proto-Oncogene Proteins c-sis; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, beta-2; Thymidine; Tritium; Tubercidin; Vasodilator Agents; Xanthines | 2000 |
Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism.
Cyclic AMP (cAMP) is the major intracellular second messenger of thyrotropin (TSH) action on thyroid cells. It stimulates growth as well as the function and differentiation of cultured thyrocytes. The adenosine A2 receptor, which activates adenylyl cyclase via coupling to the stimulating G protein (Gs), has been shown to promote constitutive activation of the cAMP cascade when transfected into various cell types. In order to test whether the A2 receptor was able to function similarly in vivo and to investigate the possible consequences of permanent adenylyl cyclase activation in thyroid cells, lines of transgenic mice were generated expressing the canine A2 adenosine receptor under control of the bovine thyroglobulin gene promoter. Thyroid-specific expression of the A2 adenosine receptor transgene promoted gland hyperplasia and severe hyperthyroidism causing premature death of the animals. The resulting goitre represents a model of hyperfunctioning adenomas: it demonstrates that constitutive activation of the cAMP cascade in such differentiated epithelial cells is sufficient to stimulate autonomous and uncontrolled function and growth. Topics: Adenosine; Animals; Blotting, Northern; Brain; Cattle; Cell Membrane; Cyclic AMP; Dogs; Hyperplasia; Hyperthyroidism; Kinetics; Methimazole; Mice; Mice, Transgenic; Phenethylamines; Poly A; Promoter Regions, Genetic; Receptors, Purinergic; Receptors, Thyrotropin; Reference Values; RNA; RNA, Messenger; Thyroglobulin; Thyroid Gland; Thyroxine; Triiodothyronine | 1992 |