2-(2-nitro-1h-imidazol-1-yl)-n-(2-2-3-3-3-pentafluoropropyl)acetamide has been researched along with Atherosclerosis* in 1 studies
1 other study(ies) available for 2-(2-nitro-1h-imidazol-1-yl)-n-(2-2-3-3-3-pentafluoropropyl)acetamide and Atherosclerosis
Article | Year |
---|---|
Detection of hypoxia by [18F]EF5 in atherosclerotic plaques in mice.
Atherosclerotic plaques with large lipid cores and inflammation contain regions of hypoxia. We examined the uptake of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide ([18F]EF5), a specific marker of hypoxia labeled for positron emission tomography, in mouse atherosclerotic plaques.. Atherosclerotic mice of 2 different genetic backgrounds (low-density lipoprotein receptor-/- apolipoprotein B100/100 and insulin-like growth factor II/low-density lipoprotein receptor-/- apolipoprotein B100/100) were first fed a Western diet to induce development of plaques with variable phenotypes and then injected with [18F]EF5. C57BL/6N mice served as controls. Aortas were dissected for biodistribution studies, autoradiography, histology, and immunohistochemistry. Uptake of [18F]EF5 was significantly higher in the aortas of mice with large atherosclerotic plaques than in the C57BL/6N controls. Furthermore, autoradiography demonstrated, on average, 2.0-fold higher [18F]EF5 uptake in atherosclerotic plaques than in the adjacent normal vessel wall. Hypoxia in plaques was verified by using an EF5 adduct-specific antibody and pimonidazole. The blood clearance of [18F]EF5 was slow, with blood radioactivity remaining relatively high up to 180 minutes after injection.. Large atherosclerotic plaques in mice contained hypoxic areas and showed uptake of [18F]EF5. Despite its slow blood clearance, the high uptake of [18F]EF5 in plaques suggested that plaque hypoxia is a potential target for identifying high-risk plaques noninvasively. Topics: Analysis of Variance; Animals; Aorta; Apolipoprotein B-100; Atherosclerosis; Autoradiography; Disease Models, Animal; Etanidazole; Female; Fluorine Radioisotopes; Genotype; Hydrocarbons, Fluorinated; Hypoxia; Immunohistochemistry; Insulin-Like Growth Factor II; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Nitroimidazoles; Phenotype; Positron-Emission Tomography; Radiopharmaceuticals; Receptors, LDL; Tissue Distribution | 2011 |