2-(2-benzofuranyl)-2-imidazoline and Stroke

2-(2-benzofuranyl)-2-imidazoline has been researched along with Stroke* in 2 studies

Other Studies

2 other study(ies) available for 2-(2-benzofuranyl)-2-imidazoline and Stroke

ArticleYear
Protective effects of 2-(2-benzonfuranyl)-2-imidazoline combined with tissue plasminogen activator after embolic stroke in rats.
    Brain research, 2018, 11-15, Volume: 1699

    Stroke is the third leading cause of death and disability in developing countries. The effective therapy for acute ischemic stroke is thrombolysis with recombinant tissue plasminogen activator (rt-PA) within 4.5 h of stroke onset. An effective post-ischemic neuroprotectant would extend the advantages of rt-PA, and protect against complications of thrombolysis. We previously reported that 2-(2-benzofuranyl)-2-imidazoline (2-BFI), a newly discovered ligand for high-affinity type 2 imidazoline receptor (I2R), provides neuroprotection against ischemic stroke in rats. Here we investigated the protective effects of 2-BFI in combination with delayed intravenous rt-PA after stroke induced by embolic middle cerebral artery occlusion (eMCAO) in rats. Infarct size was determined using 2,3,5-triphenyltrazolium chloride staining, while neurological deficit was assessed based on neurological score. Numbers of apoptotic cells in vivo were estimated using TUNEL stain, and expression of the pro-apoptotic protein BAX and anti-apoptotic protein BCL-2 were quantified by Western blotting. The results showed that 2-BFI (3 mg/kg) administered at 0.5 h after embolic MCAO combined with rt-PA (10 mg/kg) administered at 6 h reduced brain infarct size, mitigated neurological deficit, decreased the number of TUNEL-positive cells, down-regulated BAX expression, and up-regulated BCL-2 expression. These findings suggest that 2-BFI may extend the therapeutic window of rt-PA to 6 h after embolic stroke onset in rats.

    Topics: Animals; Apoptosis; Benzofurans; Brain; Disease Models, Animal; Drug Therapy, Combination; Embolism; Imidazoles; Male; Neuroprotective Agents; Random Allocation; Rats, Sprague-Dawley; Stroke; Tissue Plasminogen Activator

2018
Neurovascular protection conferred by 2-BFI treatment during rat cerebral ischemia.
    Biochemical and biophysical research communications, 2012, Aug-03, Volume: 424, Issue:3

    Stroke is caused by vascular dysfunction and currently there are no effective therapeutics to stroke induced brain damage. In contrast to an intense emphasis on neuroprotection, relatively few studies have addressed means of vascular protection in cerebral ischemia. Here we discovered that the ligand to immidazolin receptor, 2-BFI, not only provided potent neuroprotection during middle cerebral artery occlusion in rat, which confirmed our previous reports, but also protected the integrity of the cerebral vasculature. Treatment with 2-BFI twice daily after the occlusion of the middle cerebral artery for 14 d significantly improved the neurological deficits, reduced brain infarction, and importantly, protected the cerebral vasculature as evidenced by the increased expression of an endothelial marker, von Willebrand factor, and better preservation of the cerebral vasculature, as viewed under a confocal microscope on rat brain perfused with FITC-labeled dextran. These results indicated that 2-BFI contributes to protection of neurovasculature. Understanding the molecular mechanisms could eventually lead to development of more effective therapies for stroke.

    Topics: Animals; Benzofurans; Brain Ischemia; Cerebrum; Imidazoles; Imidazoline Receptors; Infarction, Middle Cerebral Artery; Ligands; Male; Middle Cerebral Artery; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Stroke; von Willebrand Factor

2012