2-((aminocarbonyl)amino)-5-(4-fluorophenyl)-3-thiophenecarboxamide has been researched along with Obesity* in 2 studies
2 other study(ies) available for 2-((aminocarbonyl)amino)-5-(4-fluorophenyl)-3-thiophenecarboxamide and Obesity
Article | Year |
---|---|
IκB kinase promotes Nrf2 ubiquitination and degradation by phosphorylating cylindromatosis, aggravating oxidative stress injury in obesity-related nephropathy.
Obesity-related nephropathy (ORN) has become one of the leading causes of end-stage renal disease and has tripled over the past decade. Previous studies have demonstrated that decreased reactive oxygen species production may contribute to improving ORN by ameliorating oxidative stress injury. Here, IκB kinase (IKK) was hypothesized to inactivate the deubiquitination activity of cylindromatosis (CYLD) by activating the phosphorylation of CYLD, thus promoting the ubiquitination of NF-E2-related factor 2 (Nrf2) and further aggravating oxidative stress injury of the kidney in ORN. This study was aimed to confirm this hypothesis.. Haematoxylin and eosin (HE), periodic acid-Schiff (PAS) and Oil Red O staining were performed to assess histopathology. Dihydroethidium (DHE) staining and MDA, SOD, CAT, and GSH-PX assessments were performed to measure reactive oxygen species (ROS) production. Immunohistochemical (IHC) staining, qRT-PCR and/or western blotting were performed to assess the expression of related genes. JC-1 assays were used to measure the mitochondrial membrane potential (ΔΨm) of treated HK-2 cells. Co-immunoprecipitation experiments (Co-IP) were used to analyse the interaction between CYLD and Nrf2 in ORN.. ORN in vivo and in vitro models were successfully constructed, and oxidative stress injury was detected in the model tissues and cells. Compared with the control groups, the phosphorylation level of CYLD increased while Nrf2 levels decreased in ORN model cells. An IKK inhibitor reduced lipid deposition, ROS production, CYLD phosphorylation levels and ΔΨm in vitro, which were reversed by knockdown of CYLD. Nrf2 directly bound to CYLD and was ubiquitinated in ORN cells. The proteasome inhibitor MG132 activated the Nrf2/ARE signalling pathway, thereby reversing the promoting effect of CYLD knockdown on oxidative stress.. IKK inactivates the deubiquitination activity of CYLD by activating the phosphorylation of CYLD, thus promoting the ubiquitination of Nrf2 and further aggravating oxidative stress injury of the kidney in ORN. This observation provided a feasible basis for the treatment of kidney damage caused by ORN. Topics: Amides; Animals; Cell Line; Deubiquitinating Enzyme CYLD; Humans; I-kappa B Kinase; Kidney; Kidney Diseases; Lipid Metabolism; Lipoproteins, LDL; Male; Mice, Inbred C57BL; NF-E2-Related Factor 2; Obesity; Oxidative Stress; Oxidoreductases; Phosphorylation; Protein Kinase Inhibitors; Reactive Oxygen Species; Thiophenes; Ubiquitination | 2021 |
Investigation of nuclear factor-κB inhibitors and interleukin-10 as regulators of inflammatory signalling in human adipocytes.
The poor prognosis of obesity is now known to involve a proinflammatory state associated with elevated circulating levels of cytokines and with macrophage infiltration of adipose tissue. In particular, Toll-like receptor (TLR)-4-driven adipose inflammation has been implicated recently in obesity and the development of diabetes. Adipocytes are now recognized as an important source of cytokine and chemokine production, including interleukin (IL)-6 and monocyte chemotractant protein (MCP)-1, and this appears to be a key step in the development of the obesity-associated inflammatory state. Interventions targeted at adipocyte inflammation may therefore form novel therapies to treat or prevent medical complications of obesity. We set out to explore whether anti-inflammatory interventions which are effective in conventional immune cells would operate on primary human cultures of in-vitro differentiated adipocytes. IL-10 was ineffective against TLR-4-induced cytokine secretion due to lack of IL-10 receptor on human adipocytes, in contrast to the widely used murine 3T3-L1 adipocyte model, which is known to respond to IL-10. Adenoviral delivery of an IL-10 receptor construct to the cells restored IL-10 responsiveness as assessed by signal transducer and activator of transcription-3 (STAT-3) phosphorylation. However, the small molecule nuclear factor (NF)-κB inhibitors 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA)-1 and carbobenzoxyl-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) as well as adenovirally delivered dominant negative inhibitor of IkappaB kinase 2 (IKK2) and wild-type IκBα were effective inhibitors of TLR-4-driven IL-6 and MCP-1 induction. These data identify a central role for canonical NF-κB signalling in adipocyte cytokine induction and indicate that small molecule inhibitors of NF-κB may form the basis of future treatments for obesity-related conditions where adipocyte inflammatory signalling is implicated. Topics: Adipocytes; Amides; Cells, Cultured; Chemokine CCL2; Humans; Inflammation; Interleukin-10; Interleukin-6; NF-kappa B; Obesity; Receptors, Interleukin-10; STAT3 Transcription Factor; Thiophenes; Toll-Like Receptor 4; Transgenes | 2010 |