2-((aminocarbonyl)amino)-5-(4-fluorophenyl)-3-thiophenecarboxamide has been researched along with Inflammation* in 8 studies
8 other study(ies) available for 2-((aminocarbonyl)amino)-5-(4-fluorophenyl)-3-thiophenecarboxamide and Inflammation
Article | Year |
---|---|
A20 functions as a negative regulator of the lipopolysaccharide-induced inflammation in corneal epithelial cells.
A20, also called TNFAIP3, is a crucial regulator of inflammation in various diseases but has not evidenced its function in the cornea. We aimed to evaluate the existence and the functions of A20 in human corneal epithelial (HCE-T) cells. After being treated with lipopolysaccharide (LPS) in different concentrations or at separate times, cells were collected to analyze A20 expressions. We then constructed the A20 knockdown system by siRNA and the A20 overexpressing system by lentivirus transduction. Systems were further exposed to medium with or without LPS for indicated times. Next, we evaluated the production of inflammatory cytokines (IL-6 and IL-8) by qRT-PCR and ELISA. Also, the translocation of P65 and the phosphorylation of P65, P38 and JNK were observed in two systems. In addition, we used the nuclear factor kappa-B (NF-κB) antagonist TPCA-1 for the pretreatment in cells and then detected the A20 expressions. We found a low basal expression of A20 in HCE-T cells, and the expressions could be dose-dependently induced by LPS, peaking at 4 h in protein level after stimulation. Both the A20 knockdown and A20 overexpressing systems were confirmed to be effective. After the LPS treatment, productions of IL-6 and IL-8 were enhanced in the A20 knockdown system and reduced in the A20 overexpressing system. A20 reduced the translocation of P65 into the nucleus and the phosphorylation of P65, P38 and JNK. Furthermore, TPCA-1 pretreatment reduced the expression of A20 in cells. We concluded that A20 is a potent regulator for corneal epithelium's reaction to inflammation, and it thus is expected to be a potential therapy target for ocular surface diseases. Topics: Epithelial Cells; Humans; Inflammation; Interleukin-6; Interleukin-8; Lipopolysaccharides; NF-kappa B | 2023 |
Anti-inflammatory role of TPCA-1 encapsulated nanosomes in porcine chondrocytes against TNF-α stimulation.
In this study, we evaluated the hypothesis that immunonanosomes carrying the drug [5-(p-Fluorophenyl)-2-ureido]thiophene-3-carboxamide (TPCA-1) will help in reducing nuclear factor-kappaB (NF-κB)-associated inflammation in porcine chondrocytes against tumor necrosis factor-alpha (TNF-α)-induced stress. The nanosomes were tagged with monoclonal anti-type II collagen (MabCII) antibody to specifically target the exposed type II collagen in cartilage matrix. TPCA-1 at a concentration of 10 µM significantly reduced expression of the matrix-degrading enzyme, Matrix metalloproteinase-13 (MMP-13) and blocked the p65 nuclear translocation. In comparison to the TPCA-1 solution alone, the TPCA-1 nanosomes were found to be more effective in reducing the cellular toxicity, oxidative stress and inflammation in chondrocytes treated with TNF-α. In addition, TPCA-1 nanosomes were more effective in reducing the gene expression of hypoxia-inducible factor-2alpha (HIF-2α) that in turn is associated with the regulation of MMP-13 gene. TPCA-1 nanosomes significantly reduced expression of both these genes. The data also showed that TPCA-1 did not attenuate the down-regulated gene expression levels of anabolic genes aggrecan (ACAN) and collagen type II alpha (COL2A1). In conclusion, this study showed that TPCA-1 nanosomes carrying a dose of 10 µM TPCA-1 can effectively increase the survival of cultured porcine chondrocytes against TNF-α-induced stress. The findings of this study could be used to develop nanosome-based drug delivery systems (DDSs) for animal model of OA. Moreover, the approach presented here can be further utilized in other studies for targeted delivery of the drug of interest at a cellular level. Topics: Amides; Animals; Anti-Inflammatory Agents; Basic Helix-Loop-Helix Transcription Factors; Chondrocytes; Collagen Type II; Down-Regulation; Drug Delivery Systems; Gene Expression; Inflammation; Matrix Metalloproteinase 13; Osteoarthritis; Signal Transduction; Swine; Thiophenes; Tumor Necrosis Factor-alpha | 2019 |
Cell membrane-formed nanovesicles for disease-targeted delivery.
Vascular inflammation is the underlying component of most diseases. To target inflamed vasculature, nanoparticles are commonly engineered by conjugating antibody to the nanoparticle surface, but this bottom-up approach could affect nanoparticle targeting and therapeutic efficacy in complex, physiologically related systems. During vascular inflammation endothelium via the NF-κB pathway instantly upregulates intercellular adhesion molecule 1 (ICAM-1) which binds integrin β2 on neutrophil membrane. Inspired by this interaction, we created a nanovesicle-based drug delivery system using nitrogen cavitation which rapidly disrupts activated neutrophils to make cell membrane nanovesicles. Studies using intravital microscopy of live mouse cremaster venules showed that these vesicles can selectively bind inflamed vasculature because they possess intact targeting molecules of integrin β2. Administering of nanovesicles loaded with TPCA-1 (a NF-κB inhibitor) markedly mitigated mouse acute lung inflammation. Our studies reveal a new top-down strategy for directly employing a diseased tissue to produce biofunctional nanovesicle-based drug delivery systems potentially applied to treat various diseases. Topics: Amides; Animals; Cell Line; Cell Membrane; Drug Delivery Systems; Humans; Inflammation; Intercellular Adhesion Molecule-1; Mice; Nanoparticles; NF-kappa B; Pneumonia; Signal Transduction; Thiophenes; Vascular Diseases; Venules | 2016 |
Controlled Inhibition of the Mesenchymal Stromal Cell Pro-inflammatory Secretome via Microparticle Engineering.
Mesenchymal stromal cells (MSCs) are promising therapeutic candidates given their potent immunomodulatory and anti-inflammatory secretome. However, controlling the MSC secretome post-transplantation is considered a major challenge that hinders their clinical efficacy. To address this, we used a microparticle-based engineering approach to non-genetically modulate pro-inflammatory pathways in human MSCs (hMSCs) under simulated inflammatory conditions. Here we show that microparticles loaded with TPCA-1, a small-molecule NF-κB inhibitor, when delivered to hMSCs can attenuate secretion of pro-inflammatory factors for at least 6 days in vitro. Conditioned medium (CM) derived from TPCA-1-loaded hMSCs also showed reduced ability to attract human monocytes and prevented differentiation of human cardiac fibroblasts to myofibroblasts, compared with CM from untreated or TPCA-1-preconditioned hMSCs. Thus, we provide a broadly applicable bioengineering solution to facilitate intracellular sustained release of agents that modulate signaling. We propose that this approach could be harnessed to improve control over MSC secretome post-transplantation, especially to prevent adverse remodeling post-myocardial infarction. Topics: Amides; Animals; Bone Marrow Cells; Cell Differentiation; Chemical Engineering; Coculture Techniques; Culture Media, Conditioned; Delayed-Action Preparations; Drug Carriers; Drug Compounding; Fibroblasts; Gene Expression; Humans; Inflammation; Lactic Acid; Mesenchymal Stem Cells; Mice; Models, Biological; Monocytes; NF-kappa B; Polyglycolic Acid; Polylactic Acid-Polyglycolic Acid Copolymer; Primary Cell Culture; Thiophenes; Tumor Necrosis Factor-alpha | 2016 |
Effects of cytokine-suppressive anti-inflammatory drugs on inflammatory activation in ex vivo human and ovine fetal membranes.
Intrauterine infection and inflammation are responsible for the majority of early (<32 weeks) spontaneous preterm births (PTBs). Anti-inflammatory agents, delivered intra-amniotically together with antibiotics, may be an effective strategy for preventing PTB. In this study, the effects of four cytokine-suppressive anti-inflammatory drugs (CSAIDs: N-acetyl cysteine (NAC), SB239063, TPCA-1 and NEMO binding domain inhibitor (NBDI)) were assessed on human and ovine gestational membrane inflammation. Full-thickness membranes were collected from healthy, term, human placentas delivered by Caesarean section (n=5). Using a Transwell model, they were stimulated ex vivo with γ-irradiation-killed Escherichia coli applied to the amniotic face. Membranes from near-term, ovine placentas were stimulated in utero with lipopolysaccharide, Ureaplasma parvum or saline control and subjected to explant culture. The effects of treatment with CSAIDs or vehicle (1% DMSO) on accumulation of PGE2 and cytokines (human interleukin 6 (IL6), IL10 and TNFα; ovine IL8 (oIL8)) were assessed in conditioned media at various time points (3-20 h). In human membranes, the IKKβ inhibitor TPCA-1 (7 μM) and p38 MAPK inhibitor SB239063 (20 μM) administered to the amniotic compartment were the most effective in inhibiting accumulation of cytokines and PGE2 in the fetal compartment. NAC (10 mM) inhibited accumulation of PGE2 and IL10 only; NBDI (10 μM) had no significant effect. In addition to the fetal compartment, SB239063 also exerted consistent and significant inhibitory effects in the maternal compartment. TPCA-1 and SB239063 suppressed oIL8 production, while all CSAIDs tested suppressed ovine PGE2 production. These results support the further investigation of intra-amniotically delivered CSAIDs for the prevention of inflammation-mediated PTB. Topics: Acetylcysteine; Amides; Animals; Anti-Inflammatory Agents; Cell-Penetrating Peptides; Cells, Cultured; Cytokines; Dinoprostone; Extraembryonic Membranes; Female; Humans; Imidazoles; Inflammation; Pregnancy; Pyrimidines; Sheep; Thiophenes | 2014 |
Cigarette smoke induced airway inflammation is independent of NF-κB signalling.
COPD is an inflammatory lung disease largely associated with exposure to cigarette smoke (CS). The mechanism by which CS leads to the pathogenesis of COPD is currently unclear; it is known however that many of the inflammatory mediators present in the COPD lung can be produced via the actions of the transcription factor Nuclear Factor-kappaB (NF-κB) and its upstream signalling kinase, Inhibitor of κB kinase-2 (IKK-2). Therefore the NF-κB/IKK-2 signalling pathway may represent a therapeutic target to attenuate the inflammation associated with COPD.. To use a range of assays, genetically modified animals and pharmacological tools to determine the role of NF-κB in CS-induced airway inflammation.. NF-κB pathway activation was measured in pre-clinical models of CS-induced airway inflammation and in human lung tissue from COPD patients. This data was complemented by employing mice missing a functional NF-κB pathway in specific cell types (epithelial and myeloid cells) and with systemic inhibitors of IKK-2.. We showed in an airway inflammation model known to be NF-κB-dependent that the NF-κB pathway activity assays and modulators were functional in the mouse lung. Then, using the same methods, we demonstrated that the NF-κB pathway appears not to play an important role in the inflammation observed after exposure to CS. Furthermore, assaying human lung tissue revealed that in the clinical samples there was also no increase in NF-κB pathway activation in the COPD lung, suggesting that our pre-clinical data is translational to human disease.. In this study we present compelling evidence that the IKK-2/NF-κB signalling pathway does not play a prominent role in the inflammatory response to CS exposure and that this pathway may not be important in COPD pathogenesis. Topics: Amides; Animals; Cells, Cultured; Disease Models, Animal; Epithelial Cells; Gene Expression; Humans; I-kappa B Kinase; Immunohistochemistry; Inflammation; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-kappa B; Nicotiana; Pulmonary Disease, Chronic Obstructive; Respiratory Tract Diseases; Reverse Transcriptase Polymerase Chain Reaction; Signal Transduction; Smoke; Smoking; Thiophenes; Time Factors; Transcription Factor RelA | 2013 |
Investigation of nuclear factor-κB inhibitors and interleukin-10 as regulators of inflammatory signalling in human adipocytes.
The poor prognosis of obesity is now known to involve a proinflammatory state associated with elevated circulating levels of cytokines and with macrophage infiltration of adipose tissue. In particular, Toll-like receptor (TLR)-4-driven adipose inflammation has been implicated recently in obesity and the development of diabetes. Adipocytes are now recognized as an important source of cytokine and chemokine production, including interleukin (IL)-6 and monocyte chemotractant protein (MCP)-1, and this appears to be a key step in the development of the obesity-associated inflammatory state. Interventions targeted at adipocyte inflammation may therefore form novel therapies to treat or prevent medical complications of obesity. We set out to explore whether anti-inflammatory interventions which are effective in conventional immune cells would operate on primary human cultures of in-vitro differentiated adipocytes. IL-10 was ineffective against TLR-4-induced cytokine secretion due to lack of IL-10 receptor on human adipocytes, in contrast to the widely used murine 3T3-L1 adipocyte model, which is known to respond to IL-10. Adenoviral delivery of an IL-10 receptor construct to the cells restored IL-10 responsiveness as assessed by signal transducer and activator of transcription-3 (STAT-3) phosphorylation. However, the small molecule nuclear factor (NF)-κB inhibitors 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA)-1 and carbobenzoxyl-Ile-Glu(O-t-butyl)-Ala-leucinal (PSI) as well as adenovirally delivered dominant negative inhibitor of IkappaB kinase 2 (IKK2) and wild-type IκBα were effective inhibitors of TLR-4-driven IL-6 and MCP-1 induction. These data identify a central role for canonical NF-κB signalling in adipocyte cytokine induction and indicate that small molecule inhibitors of NF-κB may form the basis of future treatments for obesity-related conditions where adipocyte inflammatory signalling is implicated. Topics: Adipocytes; Amides; Cells, Cultured; Chemokine CCL2; Humans; Inflammation; Interleukin-10; Interleukin-6; NF-kappa B; Obesity; Receptors, Interleukin-10; STAT3 Transcription Factor; Thiophenes; Toll-Like Receptor 4; Transgenes | 2010 |
Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma.
Nuclear factor (NF)-kappaB is a transcription factor known to regulate the expression of many inflammatory genes, including cytokines, chemokines, and adhesion molecules. NF-kappaB is held inactive in the cytoplasm, bound to I-kappaB. The removal of I-kappaB, via the actions of inhibitor of kappaB (I-kappaB) kinase-2 (IKK-2), allows NF-kappaB to enter the nucleus.. To determine the impact of inhibiting IKK-2 on in vitro and in vivo models of airway inflammation.. The effect of inhibiting IKK-2 was assessed in stimulated, cultured, primary human airway smooth muscle cells and an antigen-driven rat model of lung inflammation.. The release of cytokines from cultured cells and inflammatory cytokine expression and cellular burden in the lung were determined.. Two structurally distinct molecules and dominant negative technology demonstrated that inhibition of IKK-2 activity completely blocked cytokine release from cultured cells, whereas the two glucocorticoid comparators had limited impact on granulocyte colony-stimulating factor, interleukin 8, and eotaxin release. In addition, in an in vivo antigen-driven model of airway inflammation, the IKK-2 inhibitor blocked NF-kappaB nuclear translocation, which was associated with a reduction in inflammatory cytokine gene and protein expression, airway eosinophilia, and late asthmatic reaction, similar in magnitude to that obtained with budesonide.. This study demonstrates that inhibiting IKK-2 results in a general reduction of the inflammatory response in vitro and in vivo. Compounds of this class could have therapeutic utility in the treatment of asthma and may, in certain respects, possess a beneficial efficacy profile compared with that of a steroid. Topics: Amides; Animals; Anti-Inflammatory Agents; Asthma; Budesonide; Cells, Cultured; Chemokine CCL11; Chemokines, CC; Dexamethasone; Disease Models, Animal; Drug Evaluation, Preclinical; Gene Expression; Granulocyte Colony-Stimulating Factor; Humans; I-kappa B Kinase; Inflammation; Interleukin-8; Muscle, Smooth; NF-kappa B; Rats; Respiratory System; Thiophenes | 2005 |