1843u89 and Urinary-Bladder-Neoplasms

1843u89 has been researched along with Urinary-Bladder-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for 1843u89 and Urinary-Bladder-Neoplasms

ArticleYear
Biochemical effects of folate-based inhibitors of thymidylate synthase in MGH-U1 cells.
    Cancer chemotherapy and pharmacology, 1994, Volume: 35, Issue:2

    The TS-inhibitory effects induced by a 24-h exposure to the folate-based TS inhibitors CB3717, C2-desamino analogs of CB3717 including D1694, and BW1843U89 were quantitated using the MGH-U1 human bladder carcinoma. The effects of D1694 on the time course of TS inhibition and on intracellular deoxyuridine monophosphate (dUMP) accumulation and deoxyuridine (dUrd) production were evaluated. D1694 and BW1843U89 were the most active TS inhibitors with IC50 values of 2.4 and 0.5 nM, respectively. The C2-desamino C2-methyl dideazafolates were 27-292 times more potent than the parent CB3717 as TS inhibitors. A methyl group at the C2 position of CB3717 had the most dramatic effect, whereas a thiazole substitution for a benzyl added a small benefit and N10 substitution had a limited impact on TS-inhibitory potency and clonogenic survival. There was a significant correlation between the IC50 values for TS inhibition and those for cytotoxic potency obtained for these drugs. LV and thymidine protected cells from these folate-based TS inhibitors. Intracellular dUMP levels following 24 h D1694 (IC50) exposure increased 7-fold. Levels of dUrd effluxing into the media increased up to 4.5 microM following a 24-h exposure to D1694 (IC90). We conclude that (a) C2-desamino C2-methyl dideazafolates are potent TS inhibitors, (b) TS inhibition requires prolonged exposure with these folate TS inhibitors, (c) survival is correlated with inhibition of TS for the folate-based TS inhibitors and (d) the biochemical consequences of TS inhibition include increased dUMP and dUrd levels.

    Topics: Cell Survival; Deoxyuracil Nucleotides; Deoxyuridine; Folic Acid; Folic Acid Antagonists; Glutamates; Humans; In Vitro Techniques; Indoles; Isoindoles; Quinazolines; Structure-Activity Relationship; Thiophenes; Thymidylate Synthase; Tumor Cells, Cultured; Urinary Bladder Neoplasms

1994
Comparative cytotoxicity of folate-based inhibitors of thymidylate synthase and 5-fluorouracil +/- leucovorin in MGH-U1 cells.
    Cancer chemotherapy and pharmacology, 1994, Volume: 34, Issue:1

    Thymidylate synthase (TS) is a critical enzyme in the synthesis of DNA and an important target for cancer chemotherapy. 5-Fluorouracil (5FU) combined with leucovorin (LV) has been used to inhibit TS, and inhibition is dependent on the formation of a ternary complex between a folate cofactor, TS, and 5-fluorodeoxyuridine monophosphate (FdUMP), a metabolite of FU. The folate-based TS inhibitors CB3717, its analogs, and BW1843U89 have been synthesized as specific inhibitors of TS that do not require activation or the presence of a cofactor. We have compared the cytotoxicity of 5FU +/- LV with that of these folate-based TS inhibitors in human bladder cancer MGH-U1 cells using a colony-forming assay. After a 6-h exposure, FU+LV, CB3717, dCB3717, or C2 methyl dideazafolate analogs demonstrated similar cytotoxic potency that was 0.96 to 2.9 times that of 5FU alone. A 24-h exposure did not increase the potency of 5FU+LV relative to 5FU alone, but there was a marked increase in the cytotoxicity of the dideazafolates as compared with 5FU+LV. Similarly, BW1843U89 was more cytotoxic than 5FU/LV. This was reflected in a 3.2- to 1333-fold decrease in the 50% inhibitory concentration (IC50). Simultaneous exposure to LV and thymidine (TdR) protected MGH-U1 cells from the cytotoxicity of CB3717, its analogs, and BW1843U89. We conclude that (a) the folate-based TS inhibitors are more potent than 5FU+LV after a 24-h exposure, (b) protection by LV and TdR indicates that TS inhibition is the primary site of action, and (c) BW1843U89 is more potent than D1694 in MGH-U1 cells.

    Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Cell Survival; Drug Screening Assays, Antitumor; Fluorouracil; Folic Acid; Glutamates; Humans; Indoles; Isoindoles; Leucovorin; Quinazolines; Thymidylate Synthase; Tumor Cells, Cultured; Urinary Bladder Neoplasms

1994