1843u89 has been researched along with Leukemia--T-Cell* in 2 studies
2 other study(ies) available for 1843u89 and Leukemia--T-Cell
Article | Year |
---|---|
Increases in neutral, Mg2+-dependent and acidic, Mg2+-independent sphingomyelinase activities precede commitment to apoptosis and are not a consequence of caspase 3-like activity in Molt-4 cells in response to thymidylate synthase inhibition by GW1843.
Thymidylate synthase (TS) inhibition causes cell death, and this enzyme is the target for the important chemotherapy regime 5-fluorouracil/leucovorin. GW1843 (1843U89) is a potent and specific folate analog TS inhibitor in clinical development. Because of the importance of TS as a chemotherapy target, we are studying the mechanism of TS inhibition-induced cell death by GW1843. Ceramide is a regulatory lipid generated by the action of sphingomyelinase and is believed to signal apoptosis. The role of the ceramide in apoptotic signaling was studied in Molt-4 human T-cell leukemia cells undergoing cell death after treatment with GW1843. In response to GW1843, Molt-4 cells undergo apoptosis with both acidic pH, Mg2+-independent sphingomyelinase (ASMase) and neutral pH, Mg2+-dependent sphingomyelinase (NSMase) activities elevated as early steps in the initiation of apoptosis before Molt-4 commitment to death. These activities lead to ceramide production with kinetics consistent with a role as an effector molecule signaling the initiation of apoptosis in Molt-4 cells. These changes were found to be independent of caspase 3-like (CPP32/apopain) activity and DNA degradation, but were not separable from membrane blebbing or cell lysis in this cell line. In this report, kinetic evidence is provided for a role of ceramide in initiating GW1843-induced cell death of Molt-4 T-cell leukemia cells. Topics: Apoptosis; Caspase 3; Caspases; Ceramides; Cysteine Endopeptidases; Diglycerides; Enzyme Inhibitors; Enzyme Precursors; Humans; Indoles; Isoindoles; Leukemia, T-Cell; Magnesium; Quinazolines; Sphingomyelin Phosphodiesterase; Thymidylate Synthase; Tumor Cells, Cultured | 1998 |
Biochemical and cellular pharmacology of 1843U89, a novel benzoquinazoline inhibitor of thymidylate synthase.
Studies on a series of benzoquinazoline folate analogues as inhibitors of human thymidylate synthase led to the selection of 1843U89 for further evaluation. This compound had a Ki of 90 pM versus human thymidylate synthase and was noncompetitive with (6R,S)-5,10-methylenetetrahydrofolate. It was a good substrate for the addition of the second glutamate by hog liver folylpolyglutamate synthetase, having a Vmax/Km value 7.8-fold higher than (6R,S)-tetrahydrofolate. The data indicate that 1843U89 was transported into cells via the reduced folate carrier. The Kt for 1843U89 in MOLT-4 cells was 0.33 microM, which was 3-fold lower than that for methotrexate and 16-fold lower than that for (6S-5-formyltetrahydrofolate. V/K values were 20.3 for 1843U89 versus 1.2 and 1.9 for methotrexate and (6S)-5-formyltetrahydrofolate, respectively. It was a potent inhibitor of the growth of human cells, having 50% inhibitory concentrations below 1 nM for all cell lines tested. Growth inhibition was reversed by thymidine alone, indicating that thymidylate synthase was the only site of action of this compound. Growth inhibition was not affected by (6R,S-5-formyltetrahydrofolate at concentrations below 5 microM. However, the 50% inhibitory concentration increased when the concentration in the medium was increased to 100 microM, presumably due to competition for transport. Relative to the human cell lines used, murine cell lines were 80-1300-fold less sensitive to 1843U89 and the other benzoquinazolines tested. This decreased sensitivity appeared to be due, at least in part, to decreased transport or accumulation in murine cells. Ki values for inhibition of methotrexate transport for the benzoquinazolines were 5-17-fold higher in L1210 cells than in MOLT-4 cells. 1843U89, the benzoquinazoline which was transported most efficiently and which was the most potent inhibitor of the growth of human cells, exhibited the largest difference between binding to the MOLT-4 human and L1210 murine transporter. The V/K for L1210 transport was 80-fold less than that for MOLT-4. Initial antitumor studies, using the human thymidine kinase-deficient line GC3TK- to circumvent problems associated with murine transport as well as the high circulating thymidine levels in mice, indicated that 1843U89 had marked in vivo antitumor activity. Topics: Animals; Binding, Competitive; Breast Neoplasms; Cell Division; Colonic Neoplasms; Female; Humans; Indoles; Isoindoles; Leucovorin; Leukemia L1210; Leukemia, T-Cell; Methotrexate; Quinazolines; Structure-Activity Relationship; Subrenal Capsule Assay; Tetrahydrofolates; Thymidylate Synthase | 1993 |