18-hydroxy-5-8-11-14-eicosatetraenoic-acid has been researched along with Disease-Models--Animal* in 2 studies
2 other study(ies) available for 18-hydroxy-5-8-11-14-eicosatetraenoic-acid and Disease-Models--Animal
Article | Year |
---|---|
Disruption of pulmonary resolution mediators contribute to exacerbated silver nanoparticle-induced acute inflammation in a metabolic syndrome mouse model.
Pre-existing conditions modulate sensitivity to numerous xenobiotic exposures such as air pollution. Specifically, individuals suffering from metabolic syndrome (MetS) demonstrate enhanced acute inflammatory responses following particulate matter inhalation. The mechanisms associated with these exacerbated inflammatory responses are unknown, impairing interventional strategies and our understanding of susceptible populations. We hypothesize MetS-associated lipid dysregulation influences mediators of inflammatory resolution signaling contributing to increased acute pulmonary toxicity. To evaluate this hypothesis, healthy and MetS mouse models were treated with either 18-hydroxy eicosapentaenoic acid (18-HEPE), 14-hydroxy docosahexaenoic acid (14-HDHA), 17-hydroxy docosahexaenoic acid (17-HDHA), or saline (control) via intraperitoneal injection prior to oropharyngeal aspiration of silver nanoparticles (AgNP). In mice receiving saline treatment, AgNP exposure resulted in an acute pulmonary inflammatory response that was exacerbated in MetS mice. A targeted lipid assessment demonstrated 18-HEPE, 14-HDHA, and 17-HDHA treatments altered lung levels of specialized pro-resolving lipid mediators (SPMs). 14-HDHA and 17-HDHA treatments more efficiently reduced the exacerbated acute inflammatory response in AgNP exposed MetS mice as compared to 18-HEPE. This included decreased neutrophilic influx, diminished induction of inflammatory cytokines/chemokines, and reduced alterations in SPMs. Examination of SPM receptors determined baseline reductions in MetS mice compared to healthy as well as decreases due to AgNP exposure. Overall, these results demonstrate AgNP exposure disrupts inflammatory resolution, specifically 14-HDHA and 17-HDHA derived SPMs, in MetS contributing to exacerbated acute inflammatory responses. Our findings identify a potential mechanism responsible for enhanced susceptibility in MetS that can be targeted for interventional therapeutic approaches. Topics: Animals; Anti-Inflammatory Agents; Cytokines; Diet, High-Fat; Disease Models, Animal; Docosahexaenoic Acids; Gene Expression Regulation; Hydroxyeicosatetraenoic Acids; Inflammation Mediators; Lipid Metabolism; Lung; Male; Metabolic Syndrome; Metal Nanoparticles; Mice, Inbred C57BL; Pneumonia; Signal Transduction; Silver Compounds | 2021 |
Vasoconstrictor eicosanoids and impaired microvascular function in inactive and insulin-resistant primates.
The inability to augment capillary blood volume (CBV) in response to insulin or glucose is thought to contribute to insulin resistance (IR) by limiting glucose uptake in key storage sites. Understanding the mechanisms that contribute to impaired CBV augmentation early in the onset of IR may lead to new future therapies. We hypothesized that inactivity alters the balance of vasoactive eicosanoids and contributes to microvascular IR. In ten activity-restricted (AR) and six normal activity adult male rhesus macaques, contrast-enhanced ultrasound of skeletal muscle blood flow and CBV was performed at baseline and during intravenous glucose tolerance test (IVGTT). Plasma was analyzed for vasoconstrictor hydroxyeicosatetraenoic acids (HETEs) and the ratio of vasodilatory epoxyeicosatrienoic acids (EETs) to their less biologically active dihydroxyeicosatrienoic acids (DHETs) as an indirect measure of soluble epoxide hydrolase activity. AR primates were IR during IVGTT and had a 45% lower glucose-stimulated CBV response. Vasoconstrictor 18-HETE and 19-HETE and the DHET/EET ratio were markedly elevated in the AR group and correlated inversely with the CBV response. In addition, levels of 18-HETE and 19-HETE correlated directly with microvascular IR. We conclude that a shift toward increased eicosanoid vasoconstrictor tone correlates with abnormal skeletal muscle vascular recruitment and may contribute to IR. Topics: Animals; Blood Volume; Capillaries; Cytochrome P-450 Enzyme System; Disease Models, Animal; Glucose Tolerance Test; Hydroxyeicosatetraenoic Acids; Insulin Resistance; Macaca mulatta; Male; Microcirculation; Muscle, Skeletal; Regional Blood Flow; Vasoconstriction; Vasoconstrictor Agents | 2016 |