17-hydroxy-4-7-10-13-15-19-docosahexaenoic-acid and Inflammation

17-hydroxy-4-7-10-13-15-19-docosahexaenoic-acid has been researched along with Inflammation* in 7 studies

Trials

1 trial(s) available for 17-hydroxy-4-7-10-13-15-19-docosahexaenoic-acid and Inflammation

ArticleYear
A randomized controlled trial of the effects of n-3 fatty acids on resolvins in chronic kidney disease.
    Clinical nutrition (Edinburgh, Scotland), 2016, Volume: 35, Issue:2

    The high incidence of cardiovascular disease (CVD) in chronic kidney disease (CKD) is related partially to chronic inflammation. n-3 Fatty acids have been shown to have anti-inflammatory effects and to reduce the risk of CVD. Specialized Proresolving Lipid Mediators (SPMs) derived from the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) actively promote the resolution of inflammation. This study evaluates the effects of n-3 fatty acid supplementation on plasma SPMs in patients with CKD.. In a double-blind, placebo-controlled intervention of factorial design, 85 patients were randomized to either n-3 fatty acids (4 g), Coenzyme Q10 (CoQ) (200 mg), both supplements, or control (4 g olive oil), daily for 8 weeks. The SPMs 18-HEPE, 17-HDHA, RvD1, 17R-RvD1, and RvD2, were measured in plasma by liquid chromatography-tandem mass spectrometry before and after intervention.. Seventy four patients completed the 8 weeks intervention. n-3 Fatty acids but not CoQ significantly increased (P < 0.0001) plasma levels of 18-HEPE and 17-HDHA, the upstream precursors to the E- and D-series resolvins, respectively. RvD1 was significantly increased (P = 0.036) after n-3 fatty acids, but no change was seen in other SPMs. In regression analysis the increase in 18-HEPE and 17-HDHA after n-3 fatty acids was significantly predicted by the change in platelet EPA and DHA, respectively.. SPMs are increased after 8 weeks n-3 fatty acid supplementation in patients with CKD. This may have important implications for limiting ongoing low grade inflammation in CKD.

    Topics: Adult; Aged; Anti-Inflammatory Agents, Non-Steroidal; Blood Glucose; Body Mass Index; C-Reactive Protein; Dietary Supplements; Docosahexaenoic Acids; Double-Blind Method; Eicosapentaenoic Acid; Female; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Insulin; Male; Middle Aged; Renal Insufficiency, Chronic

2016

Other Studies

6 other study(ies) available for 17-hydroxy-4-7-10-13-15-19-docosahexaenoic-acid and Inflammation

ArticleYear
The effects of perioperative dexamethasone on eicosanoids and mediators of inflammation resolution: A sub-study of the PADDAG trial.
    Prostaglandins, leukotrienes, and essential fatty acids, 2021, Volume: 173

    Dexamethasone is an antiemetic that is frequently administered before or after the induction of anesthesia for prevention and treatment of perioperative nausea and vomiting. Dexamethasone has anti-inflammatory and immunosuppressive effects primarily via suppression of expression of inflammatory mediators. However, its effect on the eicosanoids and docosanoids that mediate the inflammatory response and inflammation resolution are unclear. We aimed to assess the effect of a single dose of intra-operative dexamethasone on peri‑operative eicosanoids involved in inflammation including leukotriene B. A subgroup of 80 patients from the randomised controlled PADDAG trial was enrolled into this substudy. They were allocated to receive 0, 4 or 8 mg dexamethasone administered intravenously at induction of anesthesia. Blood samples were collected before and 24 h after dexamethasone, for measurement of leukocytes, hs-CRP, LTB. Compared to the administration of placebo, neutrophil count was elevated (P<0.05) 24 h after administration of 4 and 8 mg dexamethasone. Dexamethasone (8 mg) resulted in increased levels of LTB. Antiemetic doses of dexamethasone given during surgery increased plasma LTB

    Topics: Adult; Antiemetics; C-Reactive Protein; Dexamethasone; Docosahexaenoic Acids; Eicosanoids; Eicosapentaenoic Acid; Fatty Acids, Unsaturated; Female; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Leukocyte Count; Leukotriene B4; Lymphocyte Count; Male; Middle Aged; Neutrophils; Perioperative Care

2021
PCTR1 ameliorates lipopolysaccharide-induced acute inflammation and multiple organ damage via regulation of linoleic acid metabolism by promoting FADS1/FASDS2/ELOV2 expression and reducing PLA2 expression.
    Laboratory investigation; a journal of technical methods and pathology, 2020, Volume: 100, Issue:7

    Gram-negative bacterial infection causes an excessive inflammatory response and acute organ damage or dysfunction due to its outer membrane component, lipopolysaccharide (LPS). Protectin conjugates in tissue regeneration 1 (PCTR1), an endogenous lipid mediator, exerts fundamental anti-inflammation and pro-resolution during infection. In the present study, we examined the properties of PCTR1 on the systemic inflammatory response, organic morphological damage and dysfunction, and serum metabolic biomarkers in an LPS-induced acute inflammatory mouse model. The results show that PCTR1 reduced serum inflammatory factors and ameliorated morphological damage and dysfunction of the lung, liver, kidney, and ultimately improved the survival rate of LPS-induced acute inflammation in mice. In addition, metabolomics analysis and high performance liquid chromatography-mass spectrometry revealed that LPS-stimulated serum linoleic acid (LA), arachidonic acid (AA), and prostaglandin E2 (PGE2) levels were significantly altered by PCTR1. Moreover, PCTR1 upregulated LPS-inhibited fatty acid desaturase 1 (FADS1), fatty acid desaturase 2 (FADS2), and elongase of very long chain fatty acids 2 (ELOVL2) expression, and downregulated LPS-stimulated phospholipase A2 (PLA2) expression to increase the intrahepatic content of AA. However, these effects of PCTR1 were partially abrogated by a lipoxin A4 receptor (ALX) antagonist (BOC-2). In summary, via the activation of ALX, PCTR1 promotes the conversion of LA to AA through upregulation of FADS1, FADS2, and ELOVL2 expression, and inhibits the conversion of bound AA into free AA through downregulation of PLA2 expression to decrease the serum AA and PGE2 levels.

    Topics: Animals; CD59 Antigens; Docosahexaenoic Acids; Fatty Acid Desaturases; Fatty Acid Elongases; Female; Inflammation; Linoleic Acid; Lipid Metabolism; Lipopolysaccharides; Male; Mice; Mice, Inbred C57BL; Phospholipases A2

2020
A role for 12/15-lipoxygenase-derived proresolving mediators in postoperative ileus: protectin DX-regulated neutrophil extravasation.
    Journal of leukocyte biology, 2016, Volume: 99, Issue:2

    Resolution of inflammation is an active counter-regulatory mechanism involving polyunsaturated fatty acid-derived proresolving lipid mediators. Postoperative intestinal motility disturbances, clinically known as postoperative ileus, occur frequently after abdominal surgery and are mediated by a complex inflammation of the intestinal muscularis externa. Herein, we tested the hypothesis that proresolving lipid mediators are involved in the resolution of postoperative ileus. In a standardized experimental model of postoperative ileus, we detected strong expression of 12/15-lipoxygenase within the postoperative muscularis externa of C57BL/6 mice, predominately located within CX3CR1(+)/Ly6C(+) infiltrating monocytes rather than Ly6G(+) neutrophils. Mass spectrometry analyses demonstrated that a 12/15-lipoxygenase increase was accompanied by production of docosahexaenoic acid-derived lipid mediators, particularly protectin DX and resolvin D2, and their common precursor 17-hydroxy docosahexaenoic acid. Perioperative administration of protectin DX, but not resolvin D2 diminished blood-derived leukocyte infiltration into the surgically manipulated muscularis externa and improved the gastrointestinal motility. Flow cytometry analyses showed impaired Ly6G(+)/Ly6C(+) neutrophil extravasation after protectin DX treatment, whereas Ly6G(-)/Ly6C(+) monocyte numbers were not affected. 12/15-lipoxygenase-deficient mice, lacking endogenous protectin DX synthesis, demonstrated increased postoperative leukocyte levels. Preoperative intravenous administration of a docosahexaenoic acid-rich lipid emulsion reduced postoperative leukocyte infiltration in wild-type mice but failed in 12/15-lipoxygenase-deficient mice mice. Protectin DX application reduced leukocyte influx and rescued 12/15-lipoxygenase-deficient mice mice from postoperative ileus. In conclusion, our results show that 12/15-lipoxygenase mediates postoperative ileus resolution via production of proresolving docosahexaenoic acid-derived protectin DX. Perioperative, parenteral protectin DX or docosahexaenoic acid supplementation, as well as modulation of the 12/15-lipoxygenase pathway, may be instrumental in prevention of postoperative ileus.

    Topics: Animals; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Chemotaxis, Leukocyte; Docosahexaenoic Acids; Drug Evaluation, Preclinical; Emulsions; Fatty Acids, Omega-3; Gastrointestinal Motility; Ileus; Inflammation; Jejunum; Mice; Mice, Inbred C57BL; Models, Immunological; Muscle, Smooth; Neutrophils; Postoperative Complications; Specific Pathogen-Free Organisms

2016
Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury.
    Mucosal immunology, 2013, Volume: 6, Issue:2

    Acute lung injury (ALI) is a severe illness with excess mortality and no specific therapy. Protective actions were recently uncovered for docosahexaenoic acid-derived mediators, including D-series resolvins. Here, we used a murine self-limited model of hydrochloric acid-induced ALI to determine the effects of aspirin-triggered resolvin D1 (AT-RvD1; 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) on mucosal injury. RvD1 and its receptor ALX/FPR2 were identified in murine lung after ALI. AT-RvD1 (~0.5-5 μg kg(-1)) decreased peak inflammation, including bronchoalveolar lavage fluid (BALF) neutrophils by ~75%. Animals treated with AT-RvD1 had improved epithelial and endothelial barrier integrity and decreased airway resistance concomitant with increased BALF epinephrine levels. AT-RvD1 inhibited neutrophil-platelet heterotypic interactions by downregulating both P-selectin and its ligand CD24. AT-RvD1 also significantly decreased levels of BALF pro-inflammatory cytokines, including interleukin (IL)-1β, IL-6, Kupffer cells, and tumor necrosis factor-α, and decreased nuclear factor-κB-phosphorylated p65 nuclear translocation. Taken together, these findings indicate that AT-RvD1 displays potent mucosal protection and promotes catabasis after ALI.

    Topics: Acute Lung Injury; Adaptor Proteins, Signal Transducing; Airway Resistance; Animals; Anti-Inflammatory Agents, Non-Steroidal; Aspirin; Blood Platelets; Blood-Air Barrier; Disease Models, Animal; Docosahexaenoic Acids; Epinephrine; Inflammation; Inflammation Mediators; Leukocytes; Macrophages, Alveolar; Male; Mice; Neutrophils; Pulmonary Edema; Receptors, Formyl Peptide; Respiratory Mucosa; Transcription Factor RelA

2013
Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation.
    Diabetes, 2013, Volume: 62, Issue:6

    Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3-derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3-derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications.

    Topics: Adipose Tissue; Animals; Blotting, Western; Docosahexaenoic Acids; Eicosapentaenoic Acid; Flow Cytometry; Humans; Immunohistochemistry; Inflammation; Male; Mice; Mice, Inbred C57BL; Obesity; Reverse Transcriptase Polymerase Chain Reaction

2013
The precursor of resolvin D series and aspirin-triggered resolvin D1 display anti-hyperalgesic properties in adjuvant-induced arthritis in rats.
    British journal of pharmacology, 2011, Volume: 164, Issue:2

    Resolution of inflammation is mediated by endogenous molecules with anti-inflammatory and pro-resolving activities and they have generated new possibilities for the treatment of inflammatory diseases. Here, we have investigated the possible anti-hyperalgesic effects of two lipids, aspirin-triggered resolvin D1 (AT-RvD1) and its precursor, 17(R)-hydroxy-4Z,7Z,10Z,13Z,15E,17R,19Z-docosahexaenoic acid (17(R)HDoHE).. The anti-hyperalgesic effects of both lipid mediators were evaluated, using mechanical and thermal stimuli, at different time-points in adjuvant-induced arthritis in rats. Cytokine levels were measured, and immunohistochemistry and real-time PCR for pro-inflammatory mediators were also performed.. The precursor of resolvin D series, 17(R)HDoHE, given systemically, inhibited the development and the maintenance of mechanical hyperalgesia in acute inflammation. Such effects were likely to be associated with modulation of both NF-κB and COX-2 in dorsal root ganglia and spinal cord. 17(R)HDoHE was also effective against sub-chronic pain. Unexpectedly, repeated treatment with 17(R)HDoHE did not modify paw and joint oedema in the sub-chronic model, while joint stiffness was prevented. Notably, AT-RvD1 exhibited marked anti-hyperalgesic effects in acute inflammation when given systemically. The efficacy of long-term treatment with either 17(R)HDoHE or AT-RvD1 was partly related to decreased production of TNF-α and IL-1β in rat hind paw.. Our findings provide fresh evidence for the anti-hyperalgesic properties of 17(R)HDoHE and its pro-resolution metabolite AT-RvD1. Such lipid mediators might be useful for treating pain associated with acute or chronic inflammation. LINKED ARTICLE This article is commented on by Xu and Ji, pp. 274-277 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2011.01348.x.

    Topics: Animals; Arthritis; Chronic Disease; Docosahexaenoic Acids; Dose-Response Relationship, Drug; Freund's Adjuvant; Hot Temperature; Inflammation; Male; Pain; Rats

2011