17-18-epoxy-5-8-11-14-eicosatetraenoic-acid and Inflammation

17-18-epoxy-5-8-11-14-eicosatetraenoic-acid has been researched along with Inflammation* in 2 studies

Other Studies

2 other study(ies) available for 17-18-epoxy-5-8-11-14-eicosatetraenoic-acid and Inflammation

ArticleYear
17,18-Epoxyeicosatetraenoic Acid Inhibits TNF-α-Induced Inflammation in Cultured Human Airway Epithelium and LPS-Induced Murine Airway Inflammation.
    American journal of rhinology & allergy, 2022, Volume: 36, Issue:1

    17,18-Epoxyeicosatetraenoic acid (17,18-EpETE), an eicosapentaenoic acid metabolite, is generated from dietary oil in the gut, and antiinflammatory activity of 17,18-EpETE was recently reported.. To evaluate the inhibitory effects of 17,18-EpETE in airway inflammation, we examined in vitro and in vivo effects on mucus production, neutrophil infiltration, and cytokine/chemokine production in airway epithelium.. Nasal tissue localization of G protein-coupled receptor 40 (GPR40), a receptor of 17,18-EpETE, was determined by immunohistochemical staining. Expression of GPR40 mRNA in nasal mucosa of chronic rhinosinusitis (CRS) patients and control subjects was determined by reverse transcription-polymerase chain reaction (RT-PCR). The in vitro effects on airway epithelial cells were examined using normal human bronchial epithelial cells and NCI-H292 cells. To examine the in vivo effects of 17,18-EpETE on airway inflammation, we induced goblet cell metaplasia, mucus production, and neutrophil infiltration in mouse nasal epithelium by intranasal lipopolysaccharide (LPS) instillation.. GPR40 is mainly expressed in human nasal epithelial cells and submucosal gland cells. RT-PCR analysis revealed that the expression of GPR40 mRNA was increased in nasal tissues from CRS patients compared with those from control subjects. 17,18-EpETE significantly inhibited tumor necrosis factor (TNF)-α-induced production of interleukin (IL)-6 , IL-8, and mucin from cultured human airway epithelial cells dose dependently, and these antiinflammatory effects on cytokine production were abolished by GW1100, a selective GPR40 antagonist. Intraperitoneal injection or intranasal instillation of 17,18-EpETE significantly attenuated LPS-induced mucus production and neutrophil infiltration in mouse nasal epithelium. Inflammatory cytokine/chemokine production in lung tissues and bronchoalveolar lavage fluids was also inhibited.. These results indicate that 17,18-EpETE plays a regulatory role in mucus hypersecretion and neutrophil infiltration in nasal inflammation. Local or systemic administration may provide a new therapeutic approach for the treatment of intractable airway disease such as CRS.

    Topics: Animals; Arachidonic Acids; Epithelium; Goblet Cells; Humans; Inflammation; Lipopolysaccharides; Mice; Mucin 5AC; Mucus; Tumor Necrosis Factor-alpha

2022
12-OH-17,18-Epoxyeicosatetraenoic acid alleviates eosinophilic airway inflammation in murine lungs.
    Allergy, 2018, Volume: 73, Issue:2

    Asthma is characterized by airway inflammation and obstruction with eosinophil infiltration into the airway. Arachidonic acid, an omega-6 fatty acid, is metabolized into cysteinyl leukotriene with pro-inflammatory properties for allergic inflammation, whereas the omega-3 fatty acid eicosapentaenoic acid (EPA) and its downstream metabolites are known to have anti-inflammatory effects. In this study, we investigated the mechanism underlying the counter-regulatory roles of EPA in inflamed lungs.. Male C57BL6 mice were sensitized and challenged by ovalbumin (OVA). After EPA treatment, we evaluated the cell count of Bronchoalveolar lavage fluid (BALF), mRNA expressions in the lungs by q-PCR, and the amounts of lipid mediators by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based lipidomics. We investigated the effect of the metabolite of EPA by in vivo and in vitro studies.. Eicosapentaenoic acid treatment reduced the accumulation of eosinophils in the airway and decreased mRNA expression of selected inflammatory mediators in the lung. Lipidomics clarified the metabolomic profile in the lungs. Among EPA-derived metabolites, 12-hydroxy-17,18-epoxyeicosatetraenoic acid (12-OH-17,18-EpETE) was identified as one of the major biosynthesized molecules; the production of this molecule was amplified by EPA administration and allergic inflammation. Intravenous administration of 12-OH-17,18-EpETE attenuated airway eosinophilic inflammation through downregulation of C-C chemokine motif 11 (CCL11) mRNA expression in the lungs. In vitro, this molecule also inhibited the release of CCL11 from human airway epithelial cells stimulated with interleukin-4.. These results demonstrated that EPA alleviated airway eosinophilic inflammation through its conversion into bioactive metabolites. Additionally, our results suggest that 12-OH-17,18-EpETE is a potential therapeutic target for the management of asthma.

    Topics: Animals; Anti-Inflammatory Agents; Arachidonic Acids; Asthma; Disease Models, Animal; Eosinophilia; Inflammation; Lung; Male; Mice; Mice, Inbred C57BL

2018