17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and Carcinoma--Non-Small-Cell-Lung

17-(dimethylaminoethylamino)-17-demethoxygeldanamycin has been researched along with Carcinoma--Non-Small-Cell-Lung* in 6 studies

Other Studies

6 other study(ies) available for 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and Carcinoma--Non-Small-Cell-Lung

ArticleYear
Receptor ligand-triggered resistance to alectinib and its circumvention by Hsp90 inhibition in EML4-ALK lung cancer cells.
    Oncotarget, 2014, Jul-15, Volume: 5, Issue:13

    Alectinib is a new generation ALK inhibitor with activity against the gatekeeper L1196M mutation that showed remarkable activity in a phase I/II study with echinoderm microtubule associated protein-like 4 (EML4)--anaplastic lymphoma kinase (ALK) non-small cell lung cancer (NSCLC) patients. However, alectinib resistance may eventually develop. Here, we found that EGFR ligands and HGF, a ligand of the MET receptor, activate EGFR and MET, respectively, as alternative pathways, and thereby induce resistance to alectinib. Additionally, the heat shock protein 90 (Hsp90) inhibitor suppressed protein expression of ALK, MET, EGFR, and AKT, and thereby induced apoptosis in EML4-ALK NSCLC cells, even in the presence of EGFR ligands or HGF. These results suggest that Hsp90 inhibitors may overcome ligand-triggered resistance to new generation ALK inhibitors and may result in more successful treatment of NSCLC patients with EML4-ALK.

    Topics: Benzoquinones; Blotting, Western; Carbazoles; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Epidermal Growth Factor; ErbB Receptors; Hepatocyte Growth Factor; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Ligands; Lung Neoplasms; Mutation; Oncogene Proteins, Fusion; Phosphorylation; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-met; Transforming Growth Factor alpha; Triazoles

2014
Combined inhibition of Hsp90 and the proteasome affects NSCLC proteostasis and attenuates cell migration.
    Anti-cancer drugs, 2014, Volume: 25, Issue:9

    Lung cancer remains the most common cause of cancer-related death worldwide. This malignancy is a complex disease, and it is important to identify potential biological targets, the blockade of which would affect multiple downstream signaling cascades. A growing number of reports recognize novel therapeutic targets in the protein homeostasis network responsible for generating and protecting the protein fold. The heat shock protein 90 (Hsp90) is an essential molecular chaperon involved in the posttranslational folding and stability of proteins. It is required for conformational maturation of multiple oncogenic kinases that drive signal transduction and proliferation of cancer cells. However, in the case of unfolded protein accumulation endoplasmic reticulum (ER) stress is induced and several response pathways such as proteasome functions are activated. The ubiquitin-proteasome system orchestrates the turnover of innumerable cellular proteins. Here, we suggest that the therapeutic efficacy of Hsp90 inhibition may be augmented by coadministering proteasome inhibitor on human non-small-cell lung cancer (NSCLC) cell lines. Indeed, we showed that coadministration of the Hsp90 inhibitor 17-demethoxygeldanamycin (17-DMAG) and proteasome inhibitor (velcade) induced ER stress evidenced by increased unfolded protein response markers. The consequences were evident in multiple aspects of the NSCLC phenotype: reduced viability and cell count, increased apoptotic cell death, and most profoundly, synergistically decreased cell motility. Our findings provide proof-of-concept that targeting ER homeostasis is therapeutically beneficial in NSCLC cell lines.

    Topics: Antineoplastic Agents; Apoptosis; Benzoquinones; Biomarkers, Tumor; Boronic Acids; Bortezomib; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Drug Synergism; Endoplasmic Reticulum Stress; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Lung Neoplasms; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Pyrazines; Unfolded Protein Response

2014
[Effects of 17-DMAG on non-small cell lung cancer cell lines A549 and H1975
 being resistant to EGFR-TKI].
    Zhongguo fei ai za zhi = Chinese journal of lung cancer, 2014, Volume: 17, Issue:11

    In the clinical treatment of patients with non-small cell lung cancer (NSCLC), the primary and acquired resistance of epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) limits its clinical application, this need to explore new strategy or method to overcome this problem. Recently, some literatures have indicated that the antitumor role of heat shock protein 90 (HSP90) inhibitors by a variety of pathways may provide new strategy for resolving this problem. In this study, we examined the effect of 17-DMAG on NSCLC cell lines A549 and H1975 which were primary and acquired resistant to EGFR-TKI respectively, the purpose was to explore its influence on cell proliferation, apoptosis and the expression of EGFR in vitro as well as possible mechanism.. After A549 and H1975 cell lines were treated with different concentrations of 17-DMAG respectively, the inhibitory rate of cell proliferation was measured by MTT assay in 24 h, 48 h and 72 h. We investigated the effect of 17-DMAG on the cell apoptosis with flow cytometry and the expression of HSP90 and EGFR with Western blot after treated with 17-DMAG for 48 h.. After treated with 17-DMAG, the inhibitory rate of different concentrations and time groups was significant (P<0.01), and the effect was in time- and dose-dependent manner; the apoptosis rate of both two cell lines in all treated groups were significantly higher than control group (P<0.01), and the effect was in dose-dependent manner. By Western blot analysis, there was no significant difference between all treated groups and control group for the expression of both HSP90 and EGFR protein in A549 cell line and HSP90 protein in H1975 cell line after exposed to 17-DMAG for 48 h (P>0.05), while the difference was significant for the expression of EGFR protein in H1975 cell line (P<0.01).. 17-DMAG inhibited the proliferation of NSCLC cell lines A549 and H1975 and also induced apoptosis of both cell lines. It down-regulated the expression of mutant EGFR protein while this phenomenon was not observed in EGFR-wild type cell line. This suggested that the mechanism maybe different between A549 and H1975 cell lines with different genetic backgroud. Our study provided new strategy for treatment with NSCLC being resistant to EGFR-TKI.. 背景与目的 表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor, EGFR-TKI)在非小细胞肺癌(non-small cell lung cancer, NSCLC)患者的临床治疗中产生的原发性及获得性耐药限制了其临床应用,需要探索新的策略或方法来克服这个问题。最近有文献报道认为热休克蛋白90(heat shock protein 90, HSP90)抑制剂能从多种途径和环节发挥抗肿瘤作用,这为解决NSCLC对EGFR-TKI的耐药提供了新的思路。本研究通过观察HSP90抑制剂17-DMAG对EGFR-TKI分别原发性及获得性耐药的NSCLC细胞株A549和H1975的作用,旨在探讨它对细胞增殖、凋亡与EGFR蛋白表达的影响及其可能的机制。方法 以不同浓度的17-DMAG分别作用于A549和H1975细胞株24 h、48 h、72 h,应用四甲基偶氮唑蓝(MTT)比色法检测细胞增殖;作用48 h后,应用流式细胞术PI单染法检测细胞凋亡,并应用Western blot检测细胞HSP90及EGFR蛋白表达水平。结果 17-DMAG在不同药物浓度和作用时间对A549和H1975细胞的增殖抑制率差异均有统计学意义(P<0.01),且呈时间和剂量依赖性;两种细胞不同药物浓度组和空白对照组之间的凋亡率差异均有统计学意义(P<0.01),且呈剂量依赖性; 17-DMAG作用48 h后,A549细胞的EGFR/GADPH和HSP90/GADPH及H1975细胞的HSP90/GADPH在不同药物浓度组和空白对照组之间的灰度比值差异均无统计学意义(P>0.05),而H1975细胞的EGFR/GADPH在不同药物浓度组和空白对照组之间的灰度比值差异均有统计学意义(P<0.01)。结论 17-DMAG对NSCLC细胞株A549和H1975均具有抑制增殖及促进凋亡作用,且它能降低突变型EGFR的蛋白表达水平,而对野生型EGFR的蛋白表达无明显影响。本研究为EGFR-TKI耐药的非小细胞肺癌提供了新的治疗策略。

    Topics: Antineoplastic Agents; Apoptosis; Benzoquinones; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; ErbB Receptors; Flow Cytometry; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Lung Neoplasms; Protein Kinase Inhibitors; Time Factors

2014
Inhibiting proliferation of gefitinib-resistant, non-small cell lung cancer.
    Cancer chemotherapy and pharmacology, 2013, Volume: 71, Issue:5

    Sensitivity to a tyrosine kinase inhibitor (TKI) is correlated with the presence of somatic mutations that affect the kinase domain of epidermal growth factor receptor (EGFR). Development of resistance to TKI is a major therapeutic problem in non-small cell lung cancer (NSCLC). Aim of this study is to identify agents that can overcome TKI resistance in NSCLC.. We used a carefully selected panel of 12 NSCLC cell lines to address this clinical problem. Initially, the cell lines were treated with a variety of 10 compounds. Cellular proliferation was measured via MTT assay. We then focused on the gefitinib-resistant, EGFR mutant cell lines [H1650: exon 19 and PTEN mutations; and H1975: exons 20 (T790M) and 21 (L858R)] to identify agents that could overcome TKI resistance.. Both 17-DMAG (Hsp90 inhibitor) and belinostat (histone deacetylase inhibitor, HDACi) effectively decreased the growth of almost all NSCLC lines. Also, belinostat markedly decreased the expression of EGFR and phospho-Akt in the cells. Combination of 17-DMAG and belinostat synergistically inhibited in vitro proliferation of these cells. Furthermore, both agents and their combination almost completely prevented TKI-resistant tumor formation (EGFR T790M mutation) in a xenograft model.. These results suggest that the combination of 17-DMAG and belinostat should be examined in a clinical trial for TKI-resistant NSCLC cell.

    Topics: Animals; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzoquinones; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Drug Synergism; ErbB Receptors; Gefitinib; Humans; Hydroxamic Acids; Lactams, Macrocyclic; Lung Neoplasms; Mice; Mice, Nude; Mutation; Protein Kinase Inhibitors; PTEN Phosphohydrolase; Quinazolines; Sulfonamides; Xenograft Model Antitumor Assays

2013
The anti-proliferative effect of heat shock protein 90 inhibitor, 17-DMAG, on non-small-cell lung cancers being resistant to EGFR tyrosine kinase inhibitor.
    Lung cancer (Amsterdam, Netherlands), 2012, Volume: 75, Issue:2

    Acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib, is frequently observed after initiation of TKIs therapy. Non-small-cell lung cancers (NSCLC) with activating EGFR mutations were reported to be sensitive to heat shock protein 90 (Hsp90) inhibitors regardless of the secondary TKI-resistant T790M mutation. We established EGFR-TKI resistant clones for PC-9 cell lines, harboring EGFR exon 19 deletions, with or without the secondary T790M mutation. We examined the anti-proliferative effect of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), an orally active Hsp90 inhibitor, on the growth of NSCLC cell lines in vitro and in vivo. In MTS assay, the IC(50) values of 17-DMAG for 13 EGFR-mutant cell lines including eight EGFR-TKI resistant cell lines ranged from 0.04 to 0.16 μM while those for seven EGFR-wild type cell lines ranged from 1.6 to 27.4 μM. Western blot analysis revealed that phospho-EGFR, phospho-Akt, phospho-MAPK, cdk4, and cyclin D1 were more readily depleted by 17-DMAG treatment in EGFR-mutant cell lines than in EGFR-wild type cell lines. Cleaved PARP expression confirmed apoptosis in response to 17-DMAG treatment in EGFR-mutant cell lines but not in EGFR-wild type cell lines. In mice xenograft models, 17-DMAG significantly reduced the growth of EGFR-mutant lines irrespective of T790M mutation. These results suggested that 17-DMAG is a potential novel therapeutic agent for NSCLC patients with EGFR mutations with or without EGFR-TKI resistance.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Benzoquinones; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Drug Resistance, Neoplasm; ErbB Receptors; Erlotinib Hydrochloride; Gefitinib; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Lung Neoplasms; Mice; Mutation; Quinazolines; Xenograft Model Antitumor Assays

2012
In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative.
    Cancer chemotherapy and pharmacology, 2005, Volume: 56, Issue:2

    To describe the preclinical basis for further development of 17-dimethyl aminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG, NSC 707545).. In vitro proliferation assays, and in vivo model studies in metastatic pancreatic carcinoma and subcutaneous xenograft melanoma and small-cell lung carcinoma models.. 17-DMAG emerged from screening studies as a potent geldanamycin analog, with the average concentration inhibiting the growth of the NCI anticancer cell line drug screen by 50% being 0.053 microM. "Head to head" comparison with 17-allylamino-17-demethoxygeldanamycin (17-AAG, NSC 330507) revealed 17-DMAG to possess potent activity against certain cell types, e.g., MDA-MB-231 breast carcinoma and HL60-TB leukemia which were relatively insensitive to 17-AAG. Evidence of oral bioavailability of 17-DMAG in a saline-based formulation prompted more detailed examination of its antitumor efficacy in vivo. 17-DMAG inhibited the growth of the AsPC-1 pancreatic carcinoma xenografts growing as intrahepatic metastases at doses of 6.7-10 mg/kg twice daily for 5 days administered orally under conditions where 17-AAG was without activity. 17-DMAG in an aqueous vehicle at 7.5-15 mg/kg per day for 3 days on days 1-3, 8-10 and 13-17, or 1-5 and 8-12 showed evidence of antitumor activity by the parenteral and oral routes in the MEXF 276 and MEXF 989 melanomas and by the parenteral route in the LXFA 629 and LXFS 650 adenocarcinoma and small-cell carcinoma models. The latter activity was comparable to the historical activity of 17-AAG.. Taken together, the in vivo activity of 17-DMAG supports the further development of this water-soluble and potentially orally administrable geldanamycin congener.

    Topics: Animals; Benzoquinones; Carcinoma, Non-Small-Cell Lung; Cell Proliferation; Drug Screening Assays, Antitumor; Lactams, Macrocyclic; Liver Neoplasms; Lung Neoplasms; Male; Melanoma; Mice; Mice, Nude; Quinones; Skin Neoplasms; Solubility; Transplantation, Heterologous; Tumor Cells, Cultured

2005